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1. Introduction

Organic compounds, including hydrocarbons and chlorinated solvents, have become
widespread contaminants in the soil and groundwater due to inadequate storage and
disposal techniques. Considerable research has been conducted over the last two
decades to devel op ways of removing contamination and restoring the subsurface.
Recent efforts have focused on in-situ techniques, primarily in the area of
bioremediation.

In-situ bioremediation has advantages over traditional remediation such as pump-and-
treat and excavation and disposal. It has the potential of destroying the contaminant in
the subsurface, thereby eliminating the need to treat a waste stream. It reduces the
potential of transferring contaminants to the atmosphere. Also, microbes may be able
to degrade non-aqueous phase contaminant that traditional pump-and-treat systems
cannot effectively move.

Many numerical models have been constructed to help evaluate relevant factors
involved in the design of in-situ bioreactors. However, most of these models do not
include multiple species and comprehensive collections of biological processes. There
isagrowing need for general purpose groundwater models that include biological
Processes.

This thesis presents a numerical model capable of simulating many of the important
subsurface processes involved in bioremediation design. It simulates two-dimensional
saturated steady-state flow aquifers with advection and dispersion of multiple reactive
solutes. It includes kinetic and equilibrium Langmuir and Freundlich isotherms, as
well asfirst-order and higher reactions. Single, double, and competitive Monod kinetic
reactions are used to represent biological reactions. Certain combinations of reactions
in this model can be used to simulate other processes such as intermediate toxicity and
cometabolic degradation.

Construction of a new model was chosen over modification of an existing program for
multiple reasons. Firgt, it is easy to introduce programming errors while modifying
existing code. Due to unfamiliarity with existing code, the programmer may be
unaware of the assumptions made by it. This can lead to errors which are very difficult
to locate and correct. In addition, existing programs are primarily writtenin
FORTRAN. C++ isabetter programming language to use for this type of groundwater
model. The object-oriented language style lends well to dynamically including
different types of reactions. Finally, a general purpose program should be easy to use.
The computer program described in this thesis was written to take advantage of the
Microsoft Windows™ interface for inputting data and viewing results.



The organization of thisthesisis as follows. Chapter 2 presents a discussion of
important subsurface processes. The numerical methodology is developed in Chapter
3. Chapter 4 evaluates model performance in ageneral sense. An example remedial
design is presented in Chapter 5. Many of the detailed calculations are included in the
appendices. The User’s Manual to the model isincluded in the final appendix.



2. Subsurface Processes

2.1 Introduction

This chapter provides an overview of the common chemical, biochemical, and solute
transport processes that can occur in a saturated aquifer. It includes values reported in
literature for parameters and kinetic constants of natural, engineered, and modeled
systems where applicable.

Figure 2.1.1 illustrates a conceptual view of the processes occurring in a saturated
aquifer.

N | Suspended
N . . (@]
N 4‘ : o oBiomass
Fluid™Ngs o
A ; .
Flow:’ mion AO . 9'__-_- Fluid Flow
S SO o e

-+ Dispersion .*:

Figure 2.1.1 Subsurface Processes

A saturated aquifer consists of a porous media, saturating fluid, aqueous and sorbed
chemicals and microbes, and sometimes non-aqueous phase liquids (NAPL’S).
Pressure gradients (measured as hydraulic head gradients) within the aquifer cause
fluid to flow through the porous media. This resultsin advective transport of aqueous
species. Dispersive mixing processes resulting from heterogeneity in the flow field
cause solute profilesto “spread” as they move through the aquifer.

Many subsurface processes act as sinks and sources for aqueous species. These
processes divide into two major groups: conservative and non-conservative mass
transfer processes. Conservative processes transfer mass from one phase to another,



conserving total mass. Some examples include the dissolution of NAPL into the
aqueous phase and sorption of aqueous species onto immobile porous media. Non-
conservative processes transfer mass from one form to another. Some examples are
radioactive decay and substrate metabolism by bacteria.

Many recent studies have focused on the role of these non-conservative biological
processes in the subsurface. These processes include: substrate consumption, biomass
growth, cometabolic transformations, intermediate toxicity, effects on material
properties, biomass suspension into the aqueous phase, biomass transport, and biomass
movement into the attached phase.

The three major conceptual models explaining the distribution of biomassin the
attached phase are Monod, microcolony, and biofilm (Odencrantz, 1992). The Monod
model assumes nothing about the distribution of bacteriain the pore space. The bulk
concentration of substrates and contaminants drive the biokinetics. The microcolony
model assumes microorganisms group themselves in colonies of 10-100 organisms. It
assumes that the microcolony sizes are small enough that internal diffusion of
substrate to the microorganisms is negligible, making the biokinetics a function of
bulk concentration (Odencrantz, 1992). The biofilm model assumes microbes
distribute themselves uniformly over the soil particles creating afilm. Internal
diffusion limits the transport of substrate and contaminants to the microbesin the film.

This thesis uses only Monod type reactions. Monod type reactions are easier to

mani pulate than the biofilm model and require less input parameters and calibration.
Semprini and McCarty (1991, 1993) successfully used Monod kinetics to model in-
situ biostimulation and bioremediation at afield site. In addition, Odencrantz (1992)
determined that there islittle difference in results between the use of Monod and
biofilm models for many conditions common to groundwater modeling of natural and
engineered systems.

The fundamental equation for advective-dispersive-reactive transport of chemicals and
microbes is (Freeze and Cherry, 1979):

% = N(RDC- VC) +R(C,1) (21)

Where: dC/dt = time rate of change in concentration (M/L3.T)
concentration (M/L°)

dispersion coefficient (L%/T)

pore water velocity (L/T)

net rate of reaction (sink/source term) (M/L3.T)

oI<O0



Equation (2.1) consists of two major groups of processes. mass transport and mass
transfer. Mass transport includes advective and dispersive transport of agueous species
caused by fluid flow and spatial concentration gradients. Mass transfer includes
process such as sorption and biological degradation. The R(C,t) term in Equation (2.1)
represents the sum of these transfer processes.

2.2 Mass Transport

Mass transport is the process responsible for the movement of solutes and suspended
biomass in the saturated aquifer. It consists of two major processes: advection and
dispersion. Advective transport is afunction of the average linear velocity (or pore
water velocity):

=4 2.2)
n
Where: V. = pore water velocity (L/T)
g = darcy velocity (L/T)
n = effective porosity

The pore water velocity is the specific discharge divided by porosity. In turn, the
specific discharge is a function of hydraulic gradient and hydraulic conductivity:

dh
=K— 2.3
a=K5 (2.3)
Where: q = specific discharge (L¥/L2T)
K = hydraulic conductivity (L/T)
dh = changein hydraulic head (L)
d = changeinlength (L)

Hydraulic conductivity values range from 1.0 to 102 m/s for gravel to unfractured
metamorphic rocks respectively (Freeze and Cherry, 1979).

Dispersive transport is amixing process that is a function of spatial concentration
gradients. The dispersion coefficient in Equation (2.1) is afunction of two processes:
molecular diffusion and mixing due to pore water velocity variations. The equations
calculating the longitudinal and transverse dispersion coefficients are:



D =a,V|+D* (2.4
D, =a |V|+D* (2.5)
Where: Dy = dispersion coefficient in principal direction of flow
(longitudinal dispersion coefficient) (L%T)
D; = dispersion coefficient perpendicular to direction of flow

(transverse dispersion coefficient) (L%/T)

a; = longitudinal dispersitivity coefficient (L)

a; = transverse dispersitivity coefficient (L)

D* = effective diffusion coefficient (L%/T)

V = porewater velocity (in principle direction) (L/T)

The effective diffusion coefficient, D*, is the molecular diffusion coefficient in water
adjusted for porous media effects. The dispersitivity coefficients are a measure of
mixing effects caused by heterogeneity in the hydraulic flow field and are typically a
function of scale (Fetter, 1993).

2.3 Mass Transfer

Mass transfer is the process responsible for the conversion of one component species
to another. This process, represented by the R(C,t) term in Equation (2.1), can be the
sum of sorption, desorption, decay, abiotic reaction, and metabolism by bacteria. It
may also be a function of multiple solutes.

Rate functions typically kinetically limit mass transfer processes. However, in certain
circumstances the process proceeds so rapidly relative to the time frame resolution, the
process appearsto be in equilibrium at all times. These processes are called
equilibrium reactions and are mathematically simple compared to their counterparts,
Kinetic reactions.

Mass transfer processes in a saturated aquifer consist of two major groups:
conservative phase transfer processes and non-conservative decay processes.
Conservative phase transfer processes are reactions by which massistransferred from
one phase to another. For example, sorption processes move mass between the mobile
agueous phase and the immobile sorbed phase, total mass is always conserved.



The equation representing the rate of transfer between the aqueous phase and sorbed
phaseis:

d;S =a(C.- C)) (2.6)

Where: dcJdt = change in sorbed species concentration (M/L3T)

Cs = solute concentration in sorbed phase (M/M)
a = rateconstant (T™?)
Cs = equilibrium concentration of solute in the solid

phase as determined by partitioning equation (M/M)

Two major relationships describe the equilibrium partitioning of aqueous and sorbed
species: Freundlich and Langmuir isotherms. Isotherm refers to the relationship
holding true at a constant temperature. The Freundlich isothermis:

C.* =kC'" (2.7)
Where: C* = equilibrium solute concentration in the solid phase (M/M)
k = partitioning coefficient (L3/M)"
n = exponential constant
C = concentration of solute in the liquid phase (M/L?)

If nis 1.0, Equation (2.7) reduces to alinear relationship. The partitioning coefficient
for the linear case can vary from 0 to 100,000 cm®/g. (See Fry and Istok (1994) for a
comprehensive review of linear partitioning coefficients.)

The Langmuir partitioning relationship is:

C*= QK C (2.8
1+k C
Where: C&& = equilibrium solute concentration in the solid phase (M/M)
Q = partitioning constant (M/M)
k. = saturation constant (L*M)
C = concentration of the solute in the liquid phase (M/L?)

Alvarez-Cohen et al. (1993) found that TCE sorption onto a synthetic hydrophobic
zeolite in a column study was best represented by the Langmuir relationship where Q
=201 mg/g and ki = 0.521 I/mg.

However, the use of the Langmuir isotherm is not common in most groundwater
applications. Many applications involve concentrations at low levels. At these levels,
both the Freundlich and Langmuir isotherms approach a linear relationship. In many



cases, laboratory data only exists for these low concentrations, resulting in alinear
relationship.

Non-conservative decay processes are reactions by which massis transferred from one
type to another. For example, organic substrates are transformed to carbon dioxide.
These processes consist of two major sub-groups: abiotic and biological processes.
Abiotic processes include chemical reactions not mediated by microbes. For example,
radioactive decay is areaction by which mass changes from one form to another. Total
mass of the original speciesis not conserved. The equation representing the rate of
radioactive decay is.

dC dP _

El:-FE—-kCl (2.9)

Where: dCy/di= rate of change in decaying species concentration (M/L3.T)

dP/dt = rate of changein product concentration (M/L3.T)
C. = concentration of decaying species (M/L®)

k = rateconstant (T?)

F = Stoichiometric ratio of reactant to product (M/M)

Biologically mediated processes include biomass growth, substrate consumption,
products formation, cometabolism, and intermediate toxicity. Since microbes mediate
these processes, the mathematical representation is more involved.

Typically two mathematical equations represent a biological process:. the rate equation
and the stoichiometry equation. The rate equation for abiological process usually
yields the rate of primary substrate consumption. The three major rate equations
representing primary substrate consumption are single Monod, double Monod, and
competitive Monod. (See Appendix A for a discussion of the development of Monod
Kinetics.)

Single Monod kinetics assume the processis afunction of only one limiting substrate.
The equation for primary substrate consumption using single Monod kineticsis:

Ko G (2.10)
dt Ky +C,
Where: k = maximum substrate utilization rate

(M substrate/M cellsT)

X = biomass concentration (M/L?)
C. = primary substrate concentration (M/L3)
Kq = substrate half-saturation constant (M/L3)



There are two special cases that derive from single Monod kinetics: zero order and
first order kinetics. Zero-order kinetics assume the limiting substrate in single Monod
Kineticsisin such excess (C; >> Kg) that the term drops from the equation. The
resulting rate equation is:

ac,
—L=- 211
" (2.11)
Where: k = maximum substrate utilization rate (M primary/M cells-T)
X = biomass concentration on a pore volume basis (M/L?)
C: = concentration of primary substrate (M/L?)

Zero-order kinetics are infrequently used because most bioremediation applications
treat low concentrations of contaminants. A more common simplification of single
Monod kineticsisfirst order kinetics.

First-order kinetics assume the concentration of the limiting substrate in the single
Monod relationship is so small compared to the saturation constant (C; << Kg) that
the concentration term in the denominator can be neglected. The resulting rate
equationis:

dc,

E =-k' XCl (212)
Where: K = maximum substrate utilization rate (M primary/M cells-T)
(equals k/Kg; of the single Monod Relationship)
X = biomass concentration on a pore volume basis (M/L?)

C: = concentration of primary substrate (M/L%)

The use of single Monod or first-order kinetics does not address the situation where
two limiting substrates are important (an electron donor and electron acceptor for
example). For these cases, double Monod kinetics has been devel oped.
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Double Monod kinetics add an additional limiting substrate to the rate equation. The
primary substrate consumption rate is now afunction of biomass concentration and
two substrates:

oG . G
dt KSl+Cl KSZ+CZ

(2.13)

Where: k = maximum substrate utilization rate
(M primary/M cellsT)

X = biomass concentration on a pore volume basis (M/L?)
C. = concentration of the primary substrate (M/L?)

C, = concentration of the secondary substrate (M/L?)

Kg = primary substrate half saturation constant (M/L?)

Ke = secondary substrate half saturation constant (M/L°)

Thisrelationship is generally used when the secondary substrate (C,) isonly available
at very low concentrations. The value of the half saturation constant (Ks) issmall asa
result.

In some instances, a non-growth substrate competes with the growth substrate for
enzyme active sites. Competitive Monod kinetics represent this situation. The equation
representing primary substrate consumption is:

&< =- kX G G (2.19)
dt KSl+Cl+K31C:|/KS KSZ+CZ
Where: k = maximum substrate utilization rate (M primary/M cells-T)
X = biomass concentration on a pore volume basis (M/L?)
C: = concentration of primary substrate (M/L?)
C, = concentration of secondary substrate (M/L%)
C; = concentration of inhibitor (M/L®)
Ke = saturation constant for primary substrate (M/L3)
Ke = saturation constant for secondary substrate (M/L°)
Kg = saturation constant for inhibitor (M/L®)

The stoichiometry equation for abiologica process represents the conversion of mass
from one form to another. These equations group into three major biological
processes: biomass growth, biomass decay, and cometabolic transformation.
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The biomass growth process includes growth of biomass, substrate consumption, and
product formation. A typical equation representing this processis:

) %% =%% :% (2.15)
growth growth growth
Where: X = biomass concentration on a pore volume basis (M/L?)
Y = yield coefficient (M cellSM primary substrate)
C, = concentration secondary substrate (M/L3)
C: = concentration primary substrate (M/L?)
F = stoichiometric ratio of secondary substrate

to primary substrate for biomass synthesis
(M secondary/M primary)

The rate of Equation (2.15) can be described by any of the rate equations presented
above (Equations (2.10) through (2.14)). For example, the double Monod rate equation
can represent methanotrophic growth in the subsurface. Methane is the primary growth
substrate while oxygen is the secondary growth substrate.

Biomass decay includes decay of biomass and the consumption of substrates needed to
complete the process. A typical equation representing this processis:

&, =d.f, X (2.16)
d[ decay dt decay

dXx _ C : 3

Where: — =bX or bX , decay rate of biomass (M/L"-T)

dt decay 1 + KSl

X = biomass concentration on a pore volume basis (M/L?)

C: = concentration primary substrate (M/L?)

d. = primary substrate demand for decay (M primary/M cells)

fs = biodegradable fraction of biomass (M/M)

b = biomassdecay rate (M biomass decayed /M biomass)

The biomass decay rate istypically afirst-order or single Monod relationship. The
above equation can include consumption of a substrate in the decay process; thisis
typically an electron acceptor. For example, decay of methanotrophic bacteria uses a
single monod rate equation where oxygen is the electron acceptor (primary substrate).
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Cometabolic transformation is the process mediated by microbes in which a non-
growth substrate is converted from one form to another. Sometimes this
transformation includes side-effects such as intermediate toxicity. Intermediate toxicity
isaprocess that damages or inactivates microbes during the degradation of certain

toxic contaminants. A typical equation representing the stoichiometry of this process
IS

1 =% (2.17)
TC dt inter mediatetoxicity ot degradation
Where: X = biomass concentration on a pore volume basis (M/L3)
C. = concentration degraded substrate (M/L?)
Tc = transformation capacity coefficient

(M cells destroyed /M substrate degraded)

Often this process is competitive with the growth process and uses the competitive
Monod rate equation. For example, cometabolic transformation of TCE by
methanotrophs uses Equation (2.14) for the rate equation where the primary substrate
is TCE, the secondary substrate is oxygen, and the inhibitor is methane. In addition,

TCE degradation creates a toxic intermediate product, TCE-Epoxide, which destroys
biomass.

Biological processes also play an indirect role in the mass transport processes by
changing materia properties. Studies by Taylor and Jaffé (1990b), Taylor et .
(1990d) and Rittmann (1993) indicate that biomass growth affects material porosity,
permeability, and dispersitivity values.

The following tables present biological parameter values found in literature for the
processes described above.



Table 2.3.1 Sample Values for Single Monod Kinetic Substrate Consumption Parameters
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Source Substrate | k(d?) | Kg (mg/l) | Experiment
Alvarez-Cohen et a. TCE 0.31 11 Laboratory
(1993)
Strand et a. (1990) Methane | 1.13 0.67 L aboratory
Broholm et al. (1992) Methane | 1.72 0.2 L aboratory
Taylor and Jaffé (1990a) Methanol | 7.70 0.799 Column
For a comprehensive review of Single Monod kinetic parameters, see Fry and Istok,
1994.

Table 2.3.2 Sample Values for Double Monod Kinetic Substrate Consumption Parameters
Source Primary | k(d") | Ke(mg/l) | Secondary Ke Study

(mg/l)
Srinivasan et al. (1988) | Creosot | 0.87 0.1 Oxygen | 0.1 Model
e

Semprini & McCarty (1991) | Methane | 1.2-2.0 | 1.0-2.0 | Oxygen | 1.0 Model
Semprini & McCarty (1991) | Methane | 3.5-5.0 | 0.2-0.3 | Oxygen | .01-0.1 | Modéel
Lindstromet a. (1992) | -- 4.34 0.12 Oxygen | 7.7x10* | Model
Dhawn et al. (1993) - 4.8 1.0 Oxygen | 1.0 Model
Chen, Y-M, et al. (1992) | Benzene | 8.3 12.2 Oxygen | 0.1 Column
Chen, Y-M, et al. (1992) | Toluene | 9.9 174 Nitrate | 2.6 Column
Chen, Y-M, et . Toluene | 9.9 174x10° | Oxygen | 0.1 Column
(1992)

Table 2.3.3 shows some biomass growth parameters used both in single and double

Monod studies.

Table 2.3.3 Sample Values for Biomass Growth and Decay

Source Y (mgCelimgsub) | b (day™) Study
Broholm et al. (1992) 0.2 0.12 L aboratory
Chen, Y-M, et a. (1992) 0.5 0.1 Column
Dhawn et a. (1993) 1.0-05 0.024 Model
Lindstrom et al. (1992) 0.278 0.02 Model
Semprini & McCarty (1991) 0.35-1.1 0.15- 0.40 | Literature
Semprini & McCarty (1991) 0.5 0.10-0.15 | Model
Strand et al. (1989) 0.51 -- L aboratory
Taylor and Jaffé (1990a) 0.0975 0.0275 Column

The above tables represent only a small portion of the available literature on
bioremediation parameters. These values were found in literature involving modeling
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efforts. Even within this narrow scope, the values of these parameters till span over a
large range. For example, the biomass yield coefficient variesfrom 0.1 to 1.0 mg
cells/mg substrate and the biomass decay rate from 0.02 to 0.15 d™.



3. Model Implementation

3.1 Introduction

This chapter discusses the development of the numerical model. The model simulates
two-dimensional saturated steady-state flow with advection and dispersion of multiple
reactive solutes. It includes the processes of Langmuir and Freundlich isotherms, as
well asfirst order and higher reactions. It uses single, double, and competitive Monod
Kineticsto represent biological processes. The model is aso capable of representing
other processes such as intermediate toxicity and cometabolic transformation by
combinations of these reactions.

The fundamental equation that represents the sum of these processesis:

% =N(NDC- VC) +R(C,t) (3.1
Where: dC/dt = time rate of change in concentration (M/L3.T)
C = concentration (M/L®)
D = dispersion coefficient (L%T)
V = porewater velocity (L/T)
R = net rate of reaction (sink/source term) (M/L3.T)

There are several options available when solving equation (3.1). Finite difference and
finite element methods are very popular. Operator-splitting methods break down
equation (3.1) into sub-problems and solve each sub-problem sequentially or
simultaneously using the most appropriate method. A literature review was conducted
to determine which methods have been employed by other researchers. Tables 3.1.1
through 3.1.4 summarize the results of aliterature search of numerical models
involving biodegradation.

The tables below illustrate that no single model includes all of the desired processes
outlined above. Construction of a new model is necessary. Construction is chosen over
modification of an existing program for multiple reasons. Modifying an existing model
would require time and effort to learn how the existing code works. It would also be
easy to introduce programming errors due to unfamiliarity with the existing code. In
addition, most existing programs are written in FORTRAN. Inclusion of multiple
different types of reactionsisfar easier to implement in C++.



Table 3.1.1 Comparison of Numerical Methods, Dimensions and Flow Type
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Author(s) Model Dimen- | Flow Type& | Advection & | Number of
sions Kinetics Dispersion Components
Chen & McTernan | MMGTM Three Steady-State | Transient Two, Substrate and
(1992) Saturated Oxygen
Chen et a. (1992) One Steady-State | Transient Five
Saturated Coupled
Dhawn (1993) -- One Steady-State | Diffusion Two, Substrate and
Saturated Only* Oxygen
Kindred (1989) One Steady-State | Transient, Three
Saturated Coupled
Lindstrom (1992) One Steady-State | Transient, Two
Saturated Decoupled
Mills (1991) COMET’ Two Steady-State | Transient, One
Saturated Coupled
Odencrantz (1992) | -- Two Steady-State | Transient, Two, Electron
Saturated Decoupled Donor & Acceptor
Rifai (1988) Bioplumell | Two Steady-State | Transient Two, Hydrocarbon
Saturated Decoupled and Oxygen
Semprini & -- One Steady-State | Transient, Two, Electron
McCarty (1991b) Saturated Coupled Donor & Acceptor
Sleep, Sykes (1993) Three Variably Transient, Arbitrary
Saturated, Coupled
Transient
Srinivasan, Mercer | BiolD One Steady-State | Transient 1° and 2° Substrates
(1988) Saturated Coupled and Oxygen
Taylor & Jaffé One Transient, Transient, Two, Substrate &
(1990b) Saturated Coupled Biomass
Tim & Mostaghmi | VIROTRANS® | One Variably Transient, One, Virus
(1991) Saturated, Coupled
Transient
Zheng (1993) -- Three Steady-State | Transient, One
Saturated Decoupled
What is Desired At Least | Steady-State Four or greater
Two or Transient

This study was for biological stimulation only, not a biodegradation study.

*Macropores

“Colloids-Metal Transport Model incorporates EPA’s CML model,

movement of contaminants on moving colloids.

#/irus Transport Model




Table 3.1.2 Comparison of Numerical Methods, Biological Reactions
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Author(s) Model Biological Cometab- | Competitive | Contaminant
Kinetics olism Inhibition Availability
Chen & McTernan | MMGTM Single, Double | No No Soluble and
(1992) Monod & Sorbed
First-Order
Chen et . (1992) No Yes No Soluble Only
Dhawn (1993) -- Double Monod | -- No Soluble Only
Kindred (1989) Double Monod | Yes No Soluble Only
Lindstrom (1992) Double Monod | No No Soluble Only
Mills (1991) COMET -- -- -- -
Odencrantz (1992) | -- Single, Double | -- -- Soluble Only
Monod &
Biofilm
Rifai (1988) Bioplumell | Instantaneous | No No Soluble Only
Semprini & -- Double Monod | -- -- Soluble Only
McCarty (1991b) & Biofilm
Sleep, Sykes (1993) -- -- -- -
Srinivasan, Mercer | BiolD Double No No Soluble Only
(1988) Monod'
Taylor & Jaffé Biofilm, -- -- Soluble Only
(1990b) (effectiveness
factor)
Tim & Mostaghmi | VIROTRANS | First-Order -- -- --
(1991) Decay
Zheng (1993) -- -- -- -- --
What is Desired Monod and Yes Yes Soluble and
First Order Sorbed

"Double Monod Kinetics were modified by including a term that accounts for the minimum substrate
value below which nothing happens.
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Table 3.1.3 Comparison of Numerical Methods, Biomass Transport, and Sorption Kinetics

Author(s) Model Biomass Biomass Sorption Sorption Kinetics
Transport Growth Partitioning
Chen & McTernan | MMGTM No Yes, Linear, Equilibrium &
(1992) Decoupled’ Langmuir & | Non-Equilibrium
Freundlich
Chen et . (1992) No Yes Linear Equilibrium
Dhawn (1993) -- No Yes, Linear Equilibrium
Decoupled’
Kindred (1989) No Yes Linear Equilibrium
Lindstrom (1992) No Yes Linear Equilibrium
Mills (1991) COMET Coalloid -- Linear for Equilibrium
Transport Soil and
Colloids
Odencrantz (1992) | -- No Yes, Linear Equilibrium
Decoupled’
Rifai (1988) Bioplumell | No No Linear Equilibrium
(inferred)
Semprini & -- No Yes, Linear Equilibrium &
McCarty (1991b) Decoupled’ Non-Equilibrium
Sleep, Sykes (1993) -- -- none none
Srinivasan, Mercer | BiolD No No Linear, Equilibrium
(1988) Langmuir &
Freundlich
Taylor & Jaffé Yes Yes -- --
(1990b)
Tim & Mostaghmi | VIROTRANS | Yes No Linear for Equilibrium
(1991) Virus
Zheng (1993) -- -- -- Linear Equilibrium
What is Desired Desiredfor | Yes Linear, Equilibrium and
Completen Langmuir & | Non-Equilibrium
ess Freundlich

"Decoupled from the fluid flow equation, does not effect fluid flow.




Table 3.1.4 Comparison of Numerical Methods, Numerical Techniques
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Author(s) Model Hard Coded Numerical Technique | Abiotic Reactions
for Acceptor
Chen & McTernan | MMGTM Yes Crank-Nicholson No
(1992) Finite-Difference,
Newton-Raphson
Chen et a. (1992) Yes Galerkin F.E. Picard No
Iteration
Dhawn (1993) - Yes ISML' No
Kindred (1989) Yes Optimal Test Function | No
Lindstrom (1992) Yes Eulerian-L egrangian No
Mills (1991) COMET -- -- --
Odencrantz (1992) | -- No Operator-splitting No
Rifai (1988) Bioplumell | Yes Method of No
Characteristics
Semprini & -- No Finite Difference, No
McCarty (1991b) Runge-Kutta
Sleep, Sykes (1993) -- Finite Difference, No
IMPESC
Srinivasan, Mercer | BiolD Yes Finite-Difference No
(1988) Crank Nicholson
Newton-Raphson
Taylor & Jaffé -- Galerkin Finite No
(1990b) Element, Weighted
Finite-Difference
Tim & Mostaghmi | VIROTRANS | -- Galerkin Finite No
(1991) Element, Newton-
Raphson, Picard
Iteration
Zheng (1993) -- -- MOC block-Centered, | No
Finite-Difference,
Foreword Particles
What is Desired No Desired for
Completeness

"The coupled set of ODE’s were integrated using the International Mathematical & Scientific Library

subroutine LGEAR and DPDES.
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3.2 Numerical Method Overview

The numerical model developed in this thesis uses a method similar in nature to
operator-splitting (OS) called integrated operator-splitting (10S). Integrated operator-
splitting was chosen because it allows different reactions to be easily included. This
section describes the 10S method used in this model and how it relates to standard OS.

Standard operator-splitting divides equation (3.1) into two parts.
dC

=N(NDC- vC) (32

A& D

dC

dt

= R(C,1) (3.3)

Rxn

The method integrates these equations separately and then recombines them to form
equation (3.4) below:

DC=C, - C,=DC,,, + DC, (3.4)
Where: DC = change in control volume concentration over atimestep
C: = concentration at end of timestep
C, = concentration at beginning of timestep

DCasp= Change in concentration due to advection and dispersion
DCr = change in concentration due to reactions

Operator-splitting solves the non-reactive solute transport term (DCagp) first. The
result is an intermediate solution (C*) that includes only the effects of advection and
dispersion over the time interval Dt. It then uses this intermediate solution as the initial
concentration to solve the reaction term (DCg) for the concentration at the end of the
timestep. Figure 3.2.1 graphically illustrates this process.
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Conc.

v

Figure 3.2.1 Standard Operator-Splitting Procedure

The dashed arrows in Figure 3.2.1 illustrate dependencies. In OS DCagp isafunction
of theinitial concentration, C,. The reaction term, DCg, is afunction of the
intermediate solution, C*.

Other researchers have used methods similar to the Operator-Splitting method.
Kinzelbach and Schafer (1991) modified the standard OS method to partially re-couple
equations (3.2) and (3.3). The value of DCg entersinto the solution of the DCagp term
as an added sink/source term in equation (3.2). In turn, DCagp entersinto the solution
of DCr as an extra constant sink/source reaction in equation (3.3). Figure 3.2.2
illustrates the dependencies associated with this method of solution.
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Conc.

v

Figure 3.2.2 Operator-Splitting Procedure modified by Kinzelbach and Schafer.

Kinzelbach and Schéfer iterate steps 1 and 2 until the final concentration, C,
converges.

Integrated Operator-Splitting borrows from each of these ideas. The difference
between this method and the othersis that |OS only re-couples equation (3.3). (See
Figure 3.2.3.) The calculation of DCagp iSindependent of kinetic reactions. However,
DCagp still entersinto the calculation of DCr. In addition, this method makes a
distinction between kinetic and equilibrium reactions. DCg is split into two
components, kinetic reactions (DCx) and equilibrium reactions (DCg). Also, the model
simulates simultaneous movement and reaction of multiple species. Equation (3.5)
rewrites equation (3.4) in aform used by 10S.

DC=C,-C,=DC,,, +DC, +DC. (3.5)
Where: DC = change array of concentration values over atime interval
C: = array of concentration values at end of timestep
Co = array of concentration values at beginning of timestep
DCaep= Change in concentration array due to solute flux

or advection-dispersion
DCk = changein array due to kinetic reactions
DCe = changein array due to equilibrium reactions

Vector notation is appropriate due to the simulation of multiple species. These species
react with each other viakinetic or equilibrium equations. It would be inappropriate to



write a separate version of equation (3.5) for each solute since these solutes can be
interdependent.

Similar to Kinzelbach and Schéfer’ s method, 10S uses an iterative procedure to
calculate the concentration at the end of atimestep. Table 3.2.1 and Figure 3.2.3
present this iterative procedure.

Table 3.2.1 10S Order of Calculation

Step | Compute | Equation Comment

1 DCas&p (3.7) Thisis computed first, itisonly a
function of initial concentration
and length of time period. Its value
will not change between iterations.

2 Cs Ct = Co + DCagp | Compute atria final
concentration, it is needed for the
calculation of kinetic reactions.

3 DCxk (3.9 Compute the changein
concentration due to kinetic
reactions, which is a function of
initial and final concentrations,
and the length of time period.

4 DCe (3.10) Compute the change in
concentration due to equilibrium
conditions, which is a function of
initial concentrations and change
in concentration due to flux and
Kinetic reaction.

5 DC (3.5) Compute the trial change in
concentration at the node
6 Cs Ci=C,+DC Compute new tria fina

concentration. If the change in C¢
from the last iteration is not
sufficiently small, go back to step
3 and continue iteration.
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Conc.

v

Steps
Figure 3.2.3 Integrated Operator-Splitting Procedure

The solution to each term on the right hand side of equation (3.5) uses a different set

of underlying assumptions and methods of solution. The change in concentration due
to advection and dispersion (DCagp) isafunction of the length of the time step and the
concentration at the beginning of the timestep. The model uses afinite difference
method corrected for numerical dispersion developed by Poulsen (1994) to solve this
term. The solution to the DCagp term requires the calculation of fluid velocities. The
model estimates these velocities using a finite difference technique described later in
this section. The change in concentration due to kinetic reactions (DC) is afunction of
the time interval length and the concentration at both the beginning and end of the time
interval. The linear integrated method described below is used to calculate thisterm.
The change in concentration due to equilibrium reactions is solely a function of the
initial concentrations and changes in concentration due to kinetic and flux components

).

The following sections describe how the 10S method cal culates the components of
equation (3.5). The first section describes how the aquifer is discretized. The following
section discusses how the model estimates groundwater velocities. A discussion of
how the model calcul ates advective and dispersive fluxes follows in the next section.
The subsequent section presents the Linear Integrated method and how it works.
Equilibrium calculations appear in the following section. The final section discusses
stability criteria. For additional information on the 10OS method, see Appendix B.
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3.3 Aquifer Discretization

The aquifer is divided into discrete elements using the Cartesian coordinate system.
The material properties and solute concentrations are assumed to be constant
throughout the element, but are allowed to differ between different elements. In this
way a non-homogeneous aquifer is approximated as a collection of different
homogeneous regions.

Figure 3.3.1illustratesa“5 x 4" aquifer mesh.

Node (1,4) Node (5,4)

7 _\\
° ° ® ® ®
° ° ® ® *
° ° ® ® ®
° ° ® ® ®

\_ Node (1,1)

Figure 3.3.1 lllustration of a5 x 4 Aquifer Mesh

Elements are node centered. Boundaries separating elements are located at an equal
distance from each node. For boundary nodes, the exterior boundary is located the
same distance from the node as its opposite boundary. Unless otherwise specified,
boundary nodes are assumed to be a no-flow no-flux boundary.



26

3.4 Estimating Groundwater Velocities

The model estimates groundwater velocities using a finite difference method. The
fundamental equation for flow in a saturated porous mediais Darcy’s Law (equation
(2.3)). The model uses this equation to calculate groundwater velocities given the
hydraulic head at each node. The finite difference solution to the hydraulic head at a

given nodeis:
DYWaEKff‘ ey, Keiha, 9, wang? ihy. Ky, O 0
_ DX, , DX,,, @ é DY, , DY,., o (36)
- e CP eK ™ K9 6 '
DYW§KX—1 + K><+1 2+ DXWQ y-1 + y+l
DX,, DX,.,2 eDY,., DY.g
Where: K9, = KiK.
Kx— 1 + Ko
Keq - 2Kx+lKo
s K><+1 + K0
ke, = 2K, K,
K,.1 +K,
K;ﬁl — 2Ky+lKO
Ky+1 + K0
h, = hydraulic head at center node
h.1 = hydraulic head at node x-1
h«1 = hydraulic head at node x+1
hy., = hydraulic head at node y-1
hy+1 = hydraulic head at node y+1
DX = distance between nodesin x direction
DY = distance between nodesiny direction
DX, = nodewidthin x direction
DY, = nodewidthiny direction
Q = externa fluid flow into the node

To compute the hydraulic head surface, equation (3.6) is written for each node in the
aquifer. The model solvesthe set of equations by inverting the resulting banded

matrix.
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3.5 Estimating fluxesfor Advection and Dispersion

Figure 3.5.1 illustrates the spatial layout of nodes and notation used by this section to
describe how the model cal cul ates advection and dispersion.

A
A

A
Ckx—l x Cko Ckx+ 1
Py q 1 > °® | qx+l P DY
A v
Oy-1 |
o
Ck

y-1

Figure 3.5.1 Node layout for computing solute flux

In the above figure, x-1 refers to the upstream node in the X direction, x+ 1 refersto the
downstream node in the X direction. The same appliesinthe Y direction. C and q refer
to the concentration of the k™ species and the specific discharge across element
boundaries, respectively.

The continuity equation calculates the change in concentration due to flux, DCi*, by
drawing a control volume around the center node:



28

(3x5- 3x)or (934 9p5)ox

DCk =
nDx nDy

(3.7)

Where: DC:* = change in concentration of K" species
due to advection-dispersion

J*k =" flux of solute k from node x-1 to center node

x+1 7

n = element porosity
Dt = timestep
DX = gridspacingin x direction

DY = gridspacinginy direction

The MCS method (Poulsen, 1994) is used to compute the flux between two nodes. It is
an explicit finite difference method corrected for numerical dispersion. Equation (3.8)
gives the equation used to calcul ate the flux between the two nodes. See Appendix C
for a detailed discussion of the MCS method.

2 o nD
ka»l :%' M‘ %%Ckx - Ckx»l)‘ —Xy(ckx-l‘ Ckx»l,y-l)"‘qckx»l (38)
e 2 2nDx Dx g Dy

Where: g, , = specific discharge from node x-1 to node center node

J*% = mass flux from node x-1 to center node
C* = concentration of K" speciesin node x
C.1 = concentration of K" speciesin node x-1
Dt = timestep

n = porosity

Dx = dispersonin X direction

Dx node spacing in X direction

cross dispersion coefficient
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3.6 Simulating Kinetic Reactions

The model uses the linear integrated (L1) method to calculate the change in
concentration due to kinetic reactions. The L1 method assumes that the rate of change
in concentration over atime period remains constant, but allows it to change between
time intervals. This linearization simplifies the calculation of changesin concentration,
especially when reaction rates are dependent upon multiple species. Appendix D
presents a detailed discussion of the L1 method. The equation for change in nodal
concentration due to kinetic reactionsis:

C

n Dt ..
DC =Q A QRE_ot +C, 2t (3.9)
T & Dt 2

Where: DCx = change in concentration array due to kinetic reactions
C: = concentration array at beginning of timestep
Co, = concentration array at end of timestep
A; = stoichiometric array of thei" reaction
R = ratefunction of thei" reaction
Dt = timestep
n = number of kinetic reactions

Equation (3.9) uses vector notation because some reaction rates can be a function of
multiple species, and may change more than one species at atime.

Equation (3.9) also shows that DC is afunction of both the initial and final
concentrations and the length of the timestep. Thisis one of the reasons for the
iterative nature of the solution of equation (3.5). The other is due to the nature of the
equilibrium reactions.

The model uses the timestep calculated for the stability of the advection and dispersion
calculation (Equation (3.8)). However, on certain occasions when reaction rates are
rapid compared to the chosen timestep, the iterative method used to solve equation
(3.9) will not converge. The model responds to this problem by cutting the timestep
used in equation (3.9) in half and calculating the final concentration (Cs) for each sub-
timestep.
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3.7 Incorporating Equilibrium Reactions

The inclusion of equilibrium reactions complicates the system of equations
represented by equation (3.5). Concentrations at the beginning of the time interval
satisfy equilibrium conditions by definition. After advection and dispersion and kinetic
reactions, the model adjusts the concentrations to satisfy equilibrium. The equilibrium
term in equation (3.5) isafunction of initial concentration, change in concentration
due to advection and dispersion, and change in concentration due to kinetic reaction.
Equation (3.10) depicts the calculation of changes due to equilibrium reactions:

DC. =4 A E,(C,+DC. +DC,) (3.10)
J
Where: DCe = change in concentration array due to equilibrium reactions

DCr = changein concentration array due to solute flux
DCk = changein concentration array due to kinetic reactions
Co, = concentration array at beginning of timestep
Aj = stoichiometric array of the j™ equilibrium reaction
E = equilibrium function of the j™ equilibrium reaction
m = number of equilibrium reactions
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3.8 Oscillations and Stability

Like most explicit finite difference schemes, the numerical method outlined above is
only conditionally stable (Poulsen, 1994). Under certain conditions, the numerical
model is prone to oscillations in space or time. The use of too large of atimestep
results in unstable time oscillations. Figure 3.8.1 illustrates time oscillations.

1.6
14 / Numerical Solution
1.2
1.0 <
0.8 +

0.6

0.4

Analytical Solution

Relative Concentration

0.2

0.0

-0.2 !
0 1

Relative Distance

Figure 3.8.1 Unstable Time Oscillations

These oscillations grow larger as the smulation progressesin time, causing the
simulation to eventually fail.
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Use of too small of atimestep results in stable space oscillations. Unlike time
oscillations, space oscillations do not grow as the simulation progresses in time. Figure
3.8.2illustrates these oscillations.

12 ¢

& Numerical Solution
.

Analytical Solution

0.8 + :

Relative Concentration
o
(o))

Relative Distance

Figure 3.8.2 Stable Space Oscillations

Proper selection of the time step can control both time and space oscillations. This
thesis uses the method of Wind and Van Doorne (1975) to determine the maximum
allowable timestep to avoid numerical oscillations in time. This method assumes
isotropic conditions without sink/source reactions. For space oscillations, thisthesis
uses a method based on maximum allowable fluxes to determine the minimum
allowable timestep. These timestep criteria are a function of advective-dispersive
properties; additional adjustment of the timestep may be necessary for the stability of
sink/source reactions. Appendix E discusses the details of the timestep calculations.
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The maximum and minimum allowabl e time steps (calculated in Appendix E) to avoid
oscillationsin atwo-dimensional simulation are:

- B+vB?+A

A

ors YA-2B
A

Dt (3.11)

(3.12)

e, f.jz _,_%qy 02
nDx @ 8nDyiz
Dy + Dyy _ ny
Dx* Dy”* DxDy
darcy velocity (L/T)
timestep (T)
grid spacing (L)
material porosity

Where: A =

v9)
|

I

For the case of a one-dimensional simulation, equations (3.11) and (3.12) simplify to
functions of the Courant and Peclet numbers. The criteriain one dimension as a
function of Courant and Peclet numbers are:

Cof |+ +1- % (3.13)
Pe Pe

Co® 1- = (3.14)

Dt
=t , courant number

nDx

Pe = q—DX,pecIet number
nD

Where: Co

darcy velocity (L/T)
timestep (T)

grid spacing (L)
material porosity

SQQQ
I

Figure 3.8.3 illustrates these equations for the one-dimensional case.
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Figure 3.8.3 Maximum and Minimum Courant Number Criteria
for one-dimensional Simulations

Using atime step in the region of no oscillations does not guarantee a perfect solution.
There will still be errors associated with the numerical procedure, however they will
not be oscillations associated with the time step.

In addition, the timestep criteria was developed under a unique set of assumptions. The
timestep criteria assumes uniform aquifer properties; it may not apply to
heterogeneous systems. In addition, it does not take sink/source reactions into account.
In some cases, it may be necessary to use trial and error to find a suitable time step.



4. Model Performance

4.1 Introduction

This chapter evaluates model performance based on the accuracy of the numerical
solution. Two major types of tests contribute to this process: verification and
validation. Verification compares analytical and numerical solutions. For this process
to be legitimate, the analytical and numerical solutions must start with the same
assumptions, such asinitial and boundary conditions. Validation compares numerical
solutions with data from real world systems such as laboratory column and field
studies.

Few ssimple analytical solutions describing solute transport coupled with reactions
exist. Poulsen (1991) used an analytical solution of the advective-dispersive equation
coupled with first order degradation. Fry et al. (1993) developed an analytical solution
to the solute transport equation with rate-limited desorption and first order decay.
However, like most analytical solutionsincorporating kinetic equations of higher
order, the method of solution ultimately requires numerical methods. This chapter only
compares numerical solutions with ssmple analytical solutions.

Because of these limitations described above, verification tests will separate the
advective-dispersive processes from the reaction processes and eval uate each
individually. An exception is one-dimensional solute transport with first order decay.
It isthe only coupled case possessing a simple analytical solution. The following list
presents the verification tests included in this chapter and Appendix F:

Conservative Solute Tests
One-Dimensional Continuous Source
One-Dimensional Pulse Source
Two-Dimensional Pulse Source

Non-Conservative Solute Tests
One-Dimensiona Continuous Source with First-Order Decay

Kinetic Reaction Tests

Linear Sorption (Appendix F)
Langmuir Sorption (Appendix F)
Freundlich Sorption (Appendix F)
First Order

Single Monod (Appendix F)
Double Monod (Appendix F)
Competitive Monod




In addition to verification tests, this chapter includes two validation-type tests. This
chapter tests model performance in simulating conservative solute transport in
stratified porous media (Sudicky et al., 1985). It also uses the model to reproduce
biostimulation modeling studies conducted by Semprini et al. (1991).

Criteria defining acceptable and unacceptable error quantities do not exist. Thisisa
function of model application. Some simulations may require high accuracy, while
others may not. This chapter does not make decisions on the acceptability of
performance. It smply presents the sensitivity of errorsto various input parameters.

36
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4.2 Measures of Performance

This chapter compares numerical and analytical solutions both qualitatively and
quantitatively. Qualitative analysis involves avisual comparison of numerical and
analytical solutions. Quantitative analysis uses mathematical means to measure the
difference between numerical and analytical solutions. There are many ways to
quantitatively measure the error in a numerical simulation. Some of these methods
include: maximum absolute error, sum of absolute error, sum of squared error, relative
sum of square error, and mass balance error.

Choice of aproper quantitative measurement of error is an important task. Sometimes
the use of certain methods isinappropriate for the numerical model. For example, the
numerical described in this thesisis mass conservative by definition, computing the
mass balance error would be meaningless. Also, other methods may yield identical
results. Numerical experimentation with this model has shown that error calculations
using absolute and relative measurement yield qualitatively similar results.

This thesis uses the Relative Sum of Square Error (RSSE) to quantify the difference
between numerical and analytical solutions. The definition of RSSE for thisthesisis:

RSSE = a a % N” O (4.1)
i=1 j=1
Where: RSSE = relative sum of square error
Ny = number of nodesin the aquifer
N: = number of timeintervalsin the ssmulation
Caj = analytical concentration at nodei, time
Cnij = numerical concentration at nodei, time
m = maximum analytical concentration in aquifer at time]

This method yields the sum of squared errors at every node in the aquifer for every
timestep in the smulation. The errors are normalized by the maximum analytical
concentration at each timestep. Numerical experimentation has shown that this
computation yields similar results as other methods such as the maximum absolute
error and sum of squared errors.
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4.3 Use of Dimensionless Variables

The use of dimensionless variables for representing and calculating stability criteriais
common in groundwater modeling. Dimensionless variables have the advantage of
remaining independent of time and space scales. This chapter presentsresults as a
function of three dimensionless variables; the Peclet number (Pe), the Courant number
(Co), and the Damkohler number (Da).

The Peclet number relates the strength of advective forces relative to dispersive forces
in the ssimulation. The Peclet number for atwo-dimensional smulation is:

&V, (_)2 o’é/ O
%Dx 8Dyﬂ
Pe=

DXX+Dyy_ ny

Dx> Dy* DxDy
Where: V,,Vy = porewater velocity in X and Y directions (L/T)

(4.2)

Dx = grid spacinginthe X direction (L)
Dy = gridspacingintheY direction (L)
Dy = principal dispersion coefficient in the X direction (L%T)
Dy, = principal dispersion coefficientintheY direction (L)
D,, = crossdispersion coefficient (L%/T)

The Courant number relates to amount of advection relative to the grid mesh size. The
Courant number for atwo-dimensional smulationis:

a/, 0
Co =Dt : 4.3
Jngﬂ gDyef (43)
Where: Dt = timestep (T)
Vy,Vy = porewater velocity in X and Y directions (L/T)
Dx = grid spacinginthe X direction (L)
Dy = gridspacingintheY direction (L)
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The Damkohler number relates the rate of solute decay to advection. The Damkohler
number in one dimensionis:

Da = KDX (4.4)
V
Where: k = first order decay rate (T
Dx = grid spacing (L)
= pore water velocity (L/T)
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4.4 One-Dimensional Conservative Solute with a Continuous Source

This section evaluates model performance in simulating one-dimensional transport of
a conservative solute with a continuous source. It reports RSSE as a function of Peclet
(Pe) and Courant (Co) numbers. The analytical equation representing solute flow in
the aquifer is (Fetter, 1994):

C, e Vit 0 aex+Vt0
C(x,t) = > eerfcg \/_ +engD Berfcgz \/_ (4.5
Where: t = time (T)
X = distance frominlet (L)
C, = concentration at inlet (M/L°)
V = porewater velocity (L/T)
Di = dispersion coefficient (L¥T)

Equation (4.5) makes the following assumptions about initial and boundary
conditions:

C(x,00=0.0 for O<x<¥
C(0,t) =G, for t>0
Infinite Aquifer Length
Homogeneous Material Properties

The model isincapable of simulating an aquifer of infinite length. This should not be a
problem if the performance tests use simulation times short enough to prevent
concentration profiles from reaching the aquifer outlet boundary.
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Figure 4.4.1 illustrates log RSSE contours as a function of Peclet (Pe) and Courant
(Co) numbers:
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Figure4.4.1 Log RSSE Contours as a Function of Pe and Co for One-Dimensional
Conservative Solute Transport with Continuous Source

Figure 4.4.1 shows that the RSSE is highly sensitive to the choice of the Peclet and
Courant number. In addition, it shows that the region around Pe » 4.0 and Co » 0.5
contains the lowest RSSE values and falls within the region of no oscillationsin
Figure 3.8.3.

Figure 4.4.1 also shows that selection of the appropriate Courant number has
implications on model performance when simulating multiple solutes or
heterogeneous systems. A Courant and Peclet number may be appropriate for one of
the solutes and inappropriate for the others. For simulations with heterogeneous flow
systems, different Courant and Peclet numbers will occur in different areas of the flow
field.

Figure 4.4.2 through Figure 4.4.4 illustrate concentration profiles for various
combinations of Peclet and Courant numbers. The three figuresillustrate choices of:
low Courant and Peclet number; low Courant number and High Peclet number; and
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high Courant and Peclet number. Circles and lines represent numerical and analytical
values respectively.
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Figure 4.4.2 One-Dimensional Conservative Solute Transport
with Continuous Source, Pe = 2.5, Co = 0.36, RSSE = 1.0 x 10°

Figure 4.4.2 illustrates the choice of alow Courant and Peclet number. This
combination of Courant and Peclet numbersfallsin the region of no oscillationsin
Figure 3.8.3.
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Figure 4.4.3 One-Dimensional Conservative Solute Transport
with Continuous Source, Pe = 250, Co = 0.36, RSSE = 1.2

Figure 4.4.3 illustrates a simulation with space oscillations. The choice of the Courant
number istoo low for the choice of Peclet number. This combination of Courant and
Peclet number fallsin the region of space oscillationsin Figure 3.8.3.
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Relative Distance

Figure 4.4.4 One-Dimensional Conservative Solute Transport
with Continuous Source, Pe = 250, Co = 0.995, RSSE = 1.1 x 10°

Figure 4.4.4 illustrates the simulation of highly advective system. The combination of
Courant and Peclet number fallsin the region of no oscillations.
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4.5 One-Dimensional Conservative Solute from a Pulse Injection

This section evaluates model performance in simulating one-dimensional transport of
a conservative solute resulting from an instantaneous source. It reports RSSE as a
function of Peclet (Pe) and Courant (Co) numbers. The analytical equation
representing solute transport in the aquifer is (Fetter, 1994):

C(xt) = - Sk expes (X V)0 (46)
,/ é ADt
Where: t = time (T)
X = distance frominlet (L)
C, = initial concentration of pulse (M/L?)
L = length of pulse application (L)
V = porewater velocity (L/T)
Di = dispersion coefficient (L%T)

Equation (4.6) makes the following assumptions about initial and boundary
conditions:

Cx0= 00 for xtO

C(0,0) = Instantaneous Point Source
of Infinite Concentration

Infinite Aquifer Length

Homogeneous Material Properties
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Figure 4.5.1 illustrates log RSSE contours as a function of Peclet (Pe) and Courant
(Co) numbers:
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Figure 4.5.1 Log RSSE Contours as a Function of Pe and Co for One-Dimensional
Conservative Solute Transport with a Pulse Source

Once again, Figure 4.5.1 shows that the RSSE is highly sensitive to the choice of
Peclet and Courant number. It also shows that the region containing the lowest RSSE
values corresponds to the region of no oscillationsin Figure 3.8.3.

Figure 4.5.2 through Figure 4.5.4 illustrate concentration profiles for various
combinations of Peclet and Courant numbers. The three figuresillustrate choices of:
low Courant and Peclet number; low Courant number and High Peclet number; and
high Courant and Peclet number. Circles and lines represent numerical and analytical
values respectively.



47

Relative Concentration

Relative Distance

Figure 4.5.2 One-Dimensional Conservative Solute Transport
with a Pulse Source, Pe = 2.5, Co = 0.36, RSSE = 2.6 x 10°

Figure 4.5.2 illustrates the choice of alow Courant and Peclet number. This
combination of Courant and Peclet numbers falls in the region of no oscillationsin
Figure 3.8.3.
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Figure 4.5.3 One-Dimensional Conservative Solute Transport
with a Pulse Source, Pe = 250, Co = 0.36, RSSE = 1.4

Figure 4.5.3 illustrates a simulation with space oscillations. The choice of the Courant
number istoo low for the choice of Peclet number. This combination of Courant and
Peclet number fallsin the region of space oscillationsin Figure 3.8.3.
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Relative Concentration
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Figure 4.5.4 One-Dimensional Conservative Solute Transport
with a Pulse Source, Pe = 250, Co = 0.995, RSSE = 7.3 x 10

Figure 4.5.4 illustrates the simulation of highly advective system. The combination of
Courant and Peclet number fallsin the region of no oscillations.
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4.6 Two-Dimensional Conservative Solute Transport

This section evaluates model performance in simulating the transport of a conservative
solute in two dimensions. It uses the analytical solution to the case of a solute pulse
injection. The analytical solution to two-dimensional solute transport is (Fetter, 1994):

B X Vt) y? 9
oyt = 4p \/ﬁ é ADt 4Dty 4
Where: t = time (T)
X = distancein X direction (L)
y = distanceinY direction (from centerline of flow) (L)
C, = initial concentration of pulse (M/L?)
A = areaof pulse application (L?)
V = porewater velocity (L/T)
(in X direction, no flow in'Y direction)
Di = longitudinal (X direction) dispersion coefficient (L%T)
D; = transverse (Y direction) dispersion coefficient (L%T)

Equation (4.7) makes the following assumptions about the initial and boundary
conditions:

Cxy,00=00 for x!Oandy!O

C(0,0,0) = Instantaneous Point Source
of Infinite Concentration

Infinite Aquifer Length

Homogeneous Material Properties
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Figure 4.6.1 illustrates cross-sectional profiles of numerical and analytical solutions.
Thistest used adispersitivity ratio (a)/a;) of 10. The angle of flow in the aquifer isat
30° from the X axis. Circles and lines represent numerical and analytical values,
respectively.
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Figure 4.6.1 Two-Dimensional Conservative Solute Transport with a Pulse Source,
Cross-sectional Profiles at a Relative Distance of Y = 0.50
Pe= 0.5 Co=0.082, a)/a; = 10, Flow Angle = 30°

Figure 4.6.1 illustrates a simulation with low Peclet and Courant numbers. This
combination of Courant and Peclet numbers falls inside the region of no oscillationsin
Figure 3.8.1.
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Figure 4.6.2 illustrates a simulation using a dispersitivity ratio of 5.0.
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Figure 4.6.2 Two-Dimensional Conservative Solute Transport with a Pulse Source,
Cross-sectional Profiles at a Relative Distance of Y = 0.50
Pe=0.5Co=0.082, a/a; =5, Flow Angle = 30°

A comparison of Figure 4.6.1 and Figure 4.6.2 illustrates that decreasing the
dispersitivity ratio improves model performance. Numerical experimentation has
shown this to be the case in general.
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Figure 4.6.3 illustrates a simulation using a dispersitivity ratio of 20.0.
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Figure 4.6.3 Two-Dimensional Conservative Solute Transport with a Pulse Source,
Cross-sectional Profiles at a Relative Distance of Y = 0.50
Pe= 0.1, Co=0.049, a/a; = 20.0, Flow Angle = 30°

Once again, Figure 4.6.3 shows that performance deteriorates as the dispersitivity ratio
increases.

This analysis assumes that if model performance is satisfactory at a 30° angle, it will in
turn be satisfactory at all flow angles. Numerical experimentation has confirmed this
assumption.



4.7 One-Dimensional Solutewith First Order Decay

This section evaluates model performance in simulating one-dimensional solute
transport with first order decay. It reports RSSE as a function of Peclet, Courant, and
Damkohler numbers. The analytical equation representing solute flow in the aquifer is
(Poulsen, 1991):

5% Jant 5 %% 20 o€ Jant
C At - xo aa/xo vt +x 6U
Kt)gerf
el )ee‘ %/anto P55 E/aD 14

Wheree A = /1+ 4\? K

time (T)

C(xt>—— ? ANXG rrogtx s AV bt ANKO e A0 4.9)

X = distancein X direction (L)

C, = concentration at inflow boundary (M/L?)
C; = initia concentration in aquifer (M/L°)

K = first order degradation coefficient (T™)
V = porewater velocity (L/T)

D = longitudinal dispersion coefficient (L%/T)

Equation (4.8) makes the following assumptions:

C(x,0)=Ci for x>0
C(0,t) =Co for t30
Infinite Aquifer Length
Homogeneous Material Properties
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Figure 4.7.1 illustrates RSSE as a function of Pe and Da. The Courant number is
calculated as afunction of Peclet number using equation (3.13). Thistest usesan
initial aquifer concentration of 0.0.
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Figure 4.7.1 RSSE as a Function of Damkohler Number and Peclet Number
(using the Maximum Allowable Courant Number) for
One-Dimensional Reactive Solute Transport with a Continuous Source

Figure 4.7.2 illustrates the interaction of advective-dispersive and decay processes and
how they effect model performance. Intuitively, it makes sense that increasing the
Damkohler number will decrease model performance. Thisisthe casein highly
advective systems (high Peclet numbers). However, for highly dispersive systems
(small Peclet numbers) it appears that there is an optimal Damkohler number. For
conservative systems with a continuous source, the optimal Peclet number appearsto
be around 3.0 (see Figure 4.4.1). Decreasing peclet numbers below 3.0 resultsin
higher RSSE values. However, the addition of first order decay appears to counteract
the processes responsible for increasing the RSSE value as Peclet number decreases.

Figure 4.7.2 through Figure 4.7.4 illustrate solute profiles at various combinations of
dimensionless parameters.
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Relative Concentration

Relative Distance

Figure 4.7.2 One-Dimensional Reactive Solute Transport with Continuous Source, Pe
=0.2, Co =0.099, Da= 0.001, RSSE = 4.02 x 10"

Figure 4.7.2 illustrates a highly dispersive system with alow decay rate.
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Figure 4.7.3 One-Dimensional Reactive Solute Transport with Continuous Source, Pe
=100, Co = 0.9905, Da= 1.0, RSSE = 1.14 x 10™

Figure 4.7.3 illustrates a highly advective system with a moderately high decay rate. It
appears that numerical solution leads the analytical solution. However the scale
representing the relative distance in this simulation is small compared to Figure 4.7.2.
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Figure 4.7.4 One-Dimensional Reactive Solute Transport with Continuous Source, Pe
=2,Co=0.618, Da=0.1, RSSE=5.7x 10°®

Figure 4.7.4 illustrates a moderately dispersive system with a moderate decay rate. It
appears the numerical solution leads the analytical solution asin Figure 4.7.3.
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4.8 Kinetic Reactions

This section evaluates model performance in simulating kinetic reactions. The tests do
not include advection and dispersion. The aquifer systemsin this section are similar to
what one would expect under completely mixed conditions.

This section presents two figures for each type of kinetic reaction. Thefirst figure
illustrates model solution as a function of time compared to the true solution. The
second figure plots RSSE (for one node) as a function of calculation time step. The
calculation timestep is analogous to the timestep used to compute advection and
dispersion fluxes. Some of the kinetic systems evaluated in this section are highly non-
linear and require numerical methods to solve. The “true” solution used in these tests
is calculated using the Mathematicaa software package (Wolfram Research Inc.,
1988). Theinitial conditions in both figures are the same.

The following tests represent a small subset of the possible combinations of input
parameters. It is not possible to anticipate all combinations and systems possible. The
examplesin this section include first order decay and competitive Monod reactions.
Appendix F contains additional examples.

The equation representing first order decay is:
dC

—=-kC 4.9
4 (4.9)
Where: dC/dt = time rate of change of concentration (M/L3.T)
C = concentration of solute species (M/L%)
k = decay coefficient (T

Figure 4.8.1 illustrates the model solution compared to the true solution using a
calculation timestep of 2.0 and varying decay coefficients. Symbols and lines represent
numerical and true values, respectively.
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Figure 4.8.1 First Order Decay with Varying k.

Figure 4.8.2 illustrates the numerical solution errors at the time step of 20.0 for various
decay coefficients.
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Figure 4.8.2 RSSE as a Function of First Order Decay Coefficient and

Calculation Timestep

Figure 4.8.2 shows that increasing the rate coefficient and timestep increases the

simulation RSSE value.
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A simplified version of the competitive inhibition equationis:

Y,C, +Y,C, %%® Y X +YC (4.10)
C C,

a %

rate = kX >
Ko +C, Ky +GCy+KG

(4.11)

Where: C, = concentration of electron acceptor (M/L°)
Cys = concentration of electron donor (M/L?)
Ci = concentration of inhibitor (M/L®)
X = biomass concentration (M/L?)
k = maximum rate constant (LM3.T)
Kw = half saturation constant for electron acceptor (M/L3)
Kg = half saturation constant for electron donor (M/L3)
Ya = stoichiometry coefficient for electron acceptor
Yq = stoichiometry coefficient for electron donor
Yx = stoichiometry coefficient for biomass
Y, = stoichiometry coefficient inhibitor

Figure 4.8.3 compares the model and true solutions using a global calculation timestep
of 2.0. For thistest k= 0.2, Ky =5.0, Kyg = 10.0, Yx=0.5, Yo=1.0, Yp=25and Y; =
0.2. Circles and lines denote numerical and true values, respectively.
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Figure 4.8.3 Competitive Monod Decay
k= 0.2, Ka=5.0,Kg=10.0,Y,=05,Y,=1.0,Yp=25,,=0.2.

Figure 4.8.4 illustrates the Relative Squared Residual as a function of calculation time
step:
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Figure 4.8.4 Squared Relative Residual as a Function of
Globa Timestep for Competitive Monod Decay.

See Appendix F for analysis of other kinetic reactions.
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4.9 Stratified Porous Media

In 1985, Sudicky, Gillham, and Frind conducted multiple tracer tests with a column
containing stratified porous media. The purpose of these experiments was to
“examine the diffusion of a non-reactive tracer in layered media under controlled
laboratory conditions.” They compared three theoretical equations using different
assumptions to laboratory results. The theoretical model termed the “ Thick-Layer
solution” best fit the experimental results.

This section evaluates model performance in ssmulating an aquifer of moderate
complexity. It uses the model to simulate the column used by Sudicky et al. The model
is parameterized with the same material properties and boundary conditions which
existed in the column. The results compare favorably with the “ Thick-Layer”

analytical solution.

The following figure illustrates the basic configuration of the column used by Sudicky
etal.

Sand Screen (both ends)
\ \
\ Silt T
0.03m X 0.2m [N
Silt i

< N —

10m 0.1m
Figure 4.9.1 Laboratory Column.

The dimensions of the column were 1.0 x 0.2 x 0.1 meters. It was packed with two
materials: silt and sand. The hydraulic conductivity of the sand was experimentally
determined to be 2.3 x 10 m/s. The conductivity of the silt was assumed to be 6 x 10°
® m/s. The porosity of the silt was found to be 0.36 by independent experimentation.
The porosity of the sand was assumed to be 0.33. The effective diffuson coefficient
of 1.21 x 10 m%s was determined by experimentally fitting the “ Thick-Layer” model.
The dispersitivity values a; and a; were assumed to be negligible and were set at zero.

The numerical model was tested against the second experiment in the literature. A
sodium chloride solution containing 100.0 mg/L Cl” was placed in a constant head
reservoir at the inlet end of the column. The pore water velocity used was 0.50 m/d in
the sand layer. The initial concentration of ClI™ in the column was zero. After seven
days of CI" input, the influent solution was changed to a chloride free solution.
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The fundamental equation describing solute transport in the column for the * Thick-
Layer” solution is represented in Equation (4.12) below. Equation (4.12) is derived
using four assumptions. First, the thickness of the sand layer is much smaller than its
length. Second, the hydraulic conductivity of the silt islow and the resulting transport
within the silt is by molecular diffusion only. Third, transport in the sand layer is much
faster than in the silt. Finally, if local longitudinal dispersion in the sand layer is
neglected, the equation describing two-dimensional solute transport of tracer in the
sand is:

2
«© =VS§- D, d S (4.12)
dt dx dy
Subject to the boundary conditions
C(x,y,00=0 (4.13)
C(0,y,t) =C, (4.149)
C(¥,y,t)=0 (4.15)
dC
—(x,0,t)=0 (4.16)
dy
(K: * ml
nD, — (x,b,t) =n'D —(x,b,t) (4.17)
tdy dy

Where: Dy = a,v,+D’

velocity in the sand layer (L/T)
transverse dispersitivity coefficient (L)
effective diffusion coefficient (L%/T)
porosity in the sand layer

porosity in the silt layer

concentration in the sand layer
concentration in the silt layer

width of the sand layer

NQOZS UL S

In addition, the direction of the solute flux in the sand layer was assumed to be
perpendicular to the sand layer axis. The solution to the above system of equations can
be found in Sudicky et al. (1985).

The experimental column system described above was entered into the numerical
model. The grid spacing inthe X and Y directions are 0.0125 m and 0.005 m
respectively. The analytical solution assumes D, = 0. However, thisisimpossible to
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represent in the implementation of the numerical model. In the numerical model D, =
D’. Figure 4.9.2 illustrates the results of the test:

80 T

Numerical

70 T Thick-Layer Solution

«  Experimental
60

50 +

40 +

Concentration

30 +

20 +

10 +

0 2 4 6 8 10 12 14 16
Time

Figure 4.9.2 Concentration at outflow boundary for Stratified System.

It can be seenin Figure 4.9.2, the numerical and analytical values agree quite well,
except for the solute front arrival times. The numerical model profile arrives before the
analytical solution. As mentioned before, the analytical solution assumes D, = 0.
Therefore, it isimpossible for the profile to arrive prior to 2 days. It was impossible to
set D, = 0. in the model because D = 1.21 x 10°° m?/s. The solute profile undergoes
lateral dispersion and arrives sooner than the analytical solution predicts. This should
not be interpreted as a problem with the numerical model.
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4.10 One-Dimensional Biostimulation Experiment

This section reproduces a modeling effort conducted by Semprini and McCarty (1991)
demonstrating biostimulation of indigenous methanotrophic microbesin a saturated
aquifer. The purpose of the field and modeling study was to demonstrate in-situ
microbia growth due to injection of nutrients. Model simulations included advection
and dispersion of two solutes. methane (the electron donor) and oxygen (electron
acceptor). The model uses double Monod kinetics to represent biomass growth and
nutrient uptake. A single Monod relationship using oxygen as the limiting substrate
represents biomass decay.

Figure 4.10.1 illustrates the field experiment design.

Injection  ———— Sampling — Extraction
Clay
7|V g H H H H Sand and
Z‘A-|5Lm oSl is1 s 1S3 2P Gravel
Clay
\ \ \ \ \ \ \ \
0.0 2.0 4.0 6.0 8.0

Distance From Well SI (m)

Figure 4.10.1Schematic representation of the test zone used in biostimulation
experiments.

The aquifer was located at a depth of 6.0 m and consisted of fine to course-grained
sand. The upper confining layer consisted of clayey sand while the underlying layer
consisted of greenish-gray silty clay (Roberts et al., 1990). The experimental well field
was designed to inject nutrients into the aquifer at well SI and extract al the injected
fluid at well P. Monitoring wells S1, S2 and S3 were located 1.0, 2.2 and 4.0 m from
thewell Sl.

The most difficult part of modeling this experiment is correctly representing boundary
conditions. For the purpose of limiting well head clogging, the field study used
alternating pulsing of electron donor and acceptor at the injection well. This requires
the use of alternating step functions to represent injection concentrations in the model.
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Table 4.10.1 presents the input parameters used in this study. The input parameters are
identical to those used in the literature except the duration of the first pulsing scheme
is shorter by 0.3 of aday.

Table 4.10.1 One-Dimensional Biostimulation Parameters

Parameter Description Notation | Vaue
Aquifer Length (m) 24
Number of Nodes 25
Grid Spacing (m) Dx 0.1
Pore Water Velocity (m/d) v 2.9
Oxygen Dispersion (m?/d) Dsa 0.25
Methane Dispersion (m?/d) Do 0.25
Max. Substrate Cons. Rate (g/g-d) Kk 1.2
Methane Half Saturation (mg/l) Ksp 2.0
Oxygen Half Saturation (mg/l) Ksa 1.0
Yield Coefficient (mg/mg) Y 0.5
Cell Decay Coefficient (d7) b 0.15
Stoichiometric Ratio (mg/mg) F 2.4
Biodegradable Cell Fraction fq 0.8
Cell Decay O, Demand (mg/mg) dc 1.42
Initial Biomass Conc. (mg/l) X 0.18
Oxygen Inject. Conc. (mg/l) Chao 26.3
Methane Inject. Conc. (mg/l) Cbo 16.5
O, Pulse Interval (d) for (0-18.8d) ta 0.02
O, Pulse Interval (d) for (18.8-25d) | t, 0.34
CH, Pulse Interval (d) for (0-18.8d) | tq 0.01
CH, Pulse Interval (d) for (18.8-25d) | tq 0.17
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The following figuresiillustrate the results from this numerical model compared to
modeled and field values from Semprini et al. (1991).

Figure 4.10.2 illustrates breakthrough curves for oxygen and methane 2.2 m
downstream from the injection point for the first 400 hours of the experiment.
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Figure 4.10.2 Experimental (symbols) and modeled (lines, this model) breakthrough
curves of methane and oxygen at observation well S2, 2.2 m from
injectionwell SI, (Figure 4 in literature).

Figure 4.10.2 shows that model simulations predict smooth concentration curves while
the actual data more prominently show the effects of the nutrient pulsing scheme.
Also, Figure 4.10.2 shows that nutrient consumption by biomass growth and decay
becomes significant as the experiment proceeds in time. Thisis due to excessive
biomass growth illustrated in Figure 4.10.3.
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Figure 4.10.3 Modeled biomass profiles computed by Semprini and McCarty
(symbols) and this model (lines), (Figure 5 in literature).

Figure 4.10.3 illustrates theoretical biomass concentration profiles for various
snapshots in time. The symbols represent data presented by Semprini et al., lines
represent values computed by this model. No experimental values were available,
obtaining them would have disturbed the subsurface.

Figure 4.10.3 shows that theoretical biomass concentrations continuously grew
throughout the entire length of the simulation, especially close to the injection well.
One of the points of the alternating pulsing scheme was to eliminate this problem. The
results suggest that alternating nutrient pulsing, as implemented in this experiment,
was not successful in preventing excessive biomass growth close to the injection well.

Figure 4.10.4 illustrates breakthrough curves for oxygen and methane 2.2 m
downstream from the injection point for the last 200 hours of the experiment. Symbols
and lines represent experimental and numerical values, respectively.
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Figure 4.10.4 Experimental (symbols) and modeled (lines, this model) breakthrough
curves of methane and oxygen at observation at well S2 under
alternative pulsing strategy (Figure 7 in literature).

Figure 4.10.4 shows that model simulation and experimental results agree well, but it
appears that the model overpredicts methane concentrations. There may be another
process in the aquifer acting as a methane sink that the model does not represent.

Figure 4.10.5 illustrates theoretical biomass concentrations at a point 2.2 m

downstream from the injection wells. Symbols and lines represent values reported by
Semprini et al. and this study, respectively.
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Figure 4.10.5 Modeled biomass concentrations computed by Semprini and McCarty
(symbols) and this model (lines) at well S2 (Figure 8 in literature).

There appears to be a small difference between the values reported by Semprini and
McCarty and those calculated by this model. One of the potential reasons could be

error caused by digitizing of the data from the literature. The trends still appear to be
the same.

This section has shown that the model can simulate a real-world in-situ bioremediation
scenario. The above figures show that the model appears capable of reproducing the
modeling effort conducted by Semprini and McCarty. The modeled and experimental
valuesin figures Figure 4.10.2 and Figure 4.10.4 matched. The predicted biomass
concentrations from this model and the literature agreed as well.



5. Example Problem

(Editors Note -- the exampl e problem presented in this chapter is a contrived system that cannot exist in
reality. The input parameters, when considered individually, are reasonable; but when combined
together, yield an impossible system: namely the dissolved TCE concentration is too high for
bioremediation using the chosen kinetic biodegradation parameters, and the dispersitivity coefficient is
too high for the aquifer size and groundwater velocity. However, this chapter still provides a good
example of how to use the model. Please excuse the neglect in parameter selection.)

5.1 Introduction

This chapter illustrates how to present physical systemsin mathematical form for the
numerical model. This process divides into three major steps: aquifer discretization
and flow field boundary conditions; selection of mobile and immobile species; and
identification of reaction processes.

This chapter will analyze one-dimensional flow and transport in a saturated confined
aquifer contaminated with a TCE spill. Aquifer reactions will include TCE dissolution,
sorption, and biodegradation by methanotrophs. The purpose of analyzing the
hypothetical aquifer isto illustrate model capabilities. This chapter will not conduct a
comprehensive analysis of the problem.

5.2 Problem Description

Figure 5.2.1 illustrates the contaminated aquifer.

Property
Boundary

=== pycavation

Bedrock

145 m

Figure5.2.1 TCE Spill Site.

A 5 meter long zone in the aguifer is contaminated with aresidual TCE saturation (Qy)
of 0.0625. The spill occurred 145 m from the property boundary. The objective of
remediation isto maintain a TCE drinking water standard of 0.005 mg/L at the
property boundary.
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Table 5.2.1 presents the aquifer properties for this example. They were selected from
values reported in the literature for sandy aquifers. Table 5.2.2 presents TCE and
biological parameters reported in Semprini et al. (1991b, 1992), Alvarez-Cohen et al.,
(1993), and Sleep and Sykes (1993).

Table5.2.1 Aquifer Material Properties

Property Symbol Value
Porosity n 0.25
Solids Density (g/cm®) rs 2.65
Material Bulk Density (g/cm®) Mo 1.9875
Hydraulic Conductivity (m/d) K 8.46
Hydraulic Gradient dh/dl 2.98x 10”
Linear Specific Discharge (m*/m°.d) q 0.25
Linear Pore Water Velocity (m/d) \ 1.0
Longitudinal Dispersitivity (m) a 10
M ethanotrophic Bacteria Concentration (mg/L) | X, 0.1

Table 5.2.2 TCE Sorption and Biodegradation Coefficients
Property Symbol Value
Partitioning Coefficient (L/kg) Kyq 2.0
Sorption Rate Coefficient (d™) as 0.2
Maximum Transformation Rate (d™) ko 0.01
Half-Saturation Coefficient (mg/L) Ke 1.0
Aqueous Solubility (mg/L) Col 1100
Liquid Density (kg/m°) I Toe 1467
Maximum Substrate Utilization Rate (d™) k 1.2
M ethane Half-Saturation (mg/L) Ks 2.0
Oxygen Half-Saturation (mg/L) Ksa 1.0
Biomass Yield Coefficient (mg biomass/mg CH,) Y 0.5
Cell Decay Coefficient (d) b 0.15
Oxygen Ratio for Growth (mg O./mg biomass) F 24
Biodegradable Cell Fraction fq 0.8
Cell Decay Oxygen Demand (mg O./mg biomass) de 142
Intermediate Toxicity Coeff. (mg biomasssimg TCE) | atox 20.83

This chapter analyzes three remedia alternatives: no-action, pump and treat, and pump
and treat with bioremediation.
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5.3 No-action

Figure 5.3.1 illustrates the aquifer representing the no-action scenario.

NAPL Contamination
Q,=0.0625

Q =0.2 | Clean Aquifer V=10 m/d; Clean Aquifer h=0

50m 145 m
5m

Figure 5.3.1 No Action Aquifer System Layout

The discretized aquifer uses a uniform grid spacing of 5.0 m. A grid spacing of 5.0 m
will allow for rapid calculation of solute movement (large Dt) at the expense of grid
mesh resolution. Since simulation length is on the order of years, not days, larger time
steps are required to reduce computational requirements. The simulation will run for 7
years, printing results every month.

Theinflow rateisin terms of pore space fraction per time. It derives from the specific
discharge in the aquifer.

m°H,0
SO o O m oy (5.1)
nDx 025 502" 50maqite

This simulation adds only three parameters; aqueous TCE, sorbed TCE, and NAPL
TCE. Table 5.3.1 shows the properties of the parameters.

Table 5.3.1 No-Action Simulation Parameters

Parameter Type Initial Value Comment

TCE (NAPL) | Immobile | 46.13 g/kg Dry Wt. | Initia value only in places
where TCE was spilled,
otherwise value is zero.

TCE (an) Mobile 0 mg/L Aqueous TCE species

TCE (9) Immobile | 0 mg/kg Dry Wi. Sorbed TCE species

The problem description presented TCE contamination in terms of residual saturation.
The following equation calculates the initial concentration presented in Table 5.3.1.
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— TCE — ;m °*TCE - 1467 :?I'(C:IIEE 4 1000g _ gTCE
TCE, o =Q, = 0062575 " 10875190 = 4613 5 (5.2)
b m® DryWt.

The simulation neglects any effect of TCE residual saturation on the water saturation.

Two reaction processes occur in the no-action case: TCE dissolution and TCE
sorption. This simulation explores both instantaneous and kinetic dissolution and
equilibrium linear sorption.

The model uses the following equations to represent TCE dissolution rate:

dTCE,,,
— t=a (TCE,, - TCE ) (5.3)

Where: TCE )
dqg
TCEgi

aqueous TCE concentration (mg/L)
dissolution rate constant (¥ d*)
TCE solubility (1100 mg/L)

For equilibrium dissolution case a4 isinfinity, the smulations will use an
instantaneous rate equation. The second part of representing TCE dissolution isthe
mass balance between the two phases. The conversion from TCE NAPL to agueous
phase TCE is.

_I bTCENAPL
TCE g =~ %
_ _gTCE c kgDrywt. - 1 m® Aquifer - qpp3
- TCENAPL kg DryW. © 19875 e Aqu|fe|r 025 miH,0 10%. (5-4)

= (7950" TCE e reeer ) e

NAPL kgDrywt.] LH,O

The resulting stoichiometric equation is:

TCE o, Y44 94994® 7950° TCE (5.5)

(aq)

The equation representing TCE sorptionis:
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dTCE

——9 =4 (K,TCE, - TCE) (5.6)
Where: TCE = sorbed phase TCE concentration (mg/kg Dry Wt.)
as = sorption rate coefficient (0.2d ™ or ¥ d*%
Kg = linear partitioning coefficient (2.0 L/kg Dry Wt.)
TCEag= agueous phase TCE concentration (mg/L)

In the case where as isinfinity, the model will use the following equilibrium
relationship:

TCE,,, = K,TCE (5.7)

(aq)

The agueous and sorbed phase TCE values are in different units. The conversion from
sorbed TCE to agueous TCE is:

r TCE
— (s)
TCE, ) =——
n
_ mgTCE - E kgDryWt. - 3 mPAquifer - pp?
- TCE(S) kg Drywt. 1987"’m3 Aquifer 025 mPH,0  1000L (5.8)

=(7.95" TCE,, e ) s

(s) kgDryWwt.] LH,O

The resulting stoichiometric equation is:

795" TCE,,, %%:9%i® TCE (5.9)

(aq)



79

Figure 5.3.2 illustrates the boundary TCE concentration as a function of time using
equilibrium and kinetic sorption isotherms.
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Figure 5.3.2 No Action TCE Border Concentration using
Kinetic and Equilibrium Sorption

Figure 5.3.2 shows there is little difference between solutions. Subsequent simulations
will use equilibrium sorption because it is computationally faster.
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Figure 5.3.3 illustrates boundary concentration sensitivity to different dissolution rates
using equilibrium sorption.
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Figure 5.3.3 No Action TCE Border Concentration with different dissolution rates

Figure 5.3.3 shows that the dissolution rate makes a large difference in the results. The
problem description did not give a dissolution rate constant. An instantaneous
dissolution process will represent dissolution because it provides for the largest peak
concentration at the boundary.
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Figure 5.3.4 illustrates simulation sensitivity to grid spacing. It compares boundary
concentrations using the discretized aquifer described above (Dx = 5.0 m) and asimilar
aquifer using agrid spacing of 1.0 m.
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Figure 5.3.4 No Action TCE Border Concentration using different grid spacing

Figure 5.3.4 shows little difference in results. The 5 m aquifer mesh took 14 minutes
real time to simulate 20 years while the 1.0 m mesh took 7 hoursreal time. Thisis due
to afive-fold increase in the number of nodes, afive-fold decrease in the Peclet
number causing aten-fold decrease in the maximum allowable Courant number.
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Figure 5.3.5 illustrates the distribution of massin the first 20 years. “ Total massin
System” refersto the sum of NAPL, sorbed TCE, and aqueous TCE inside the aquifer

boundary.
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Figure 5.3.5 No Action Distribution of Mass
It appearsthat it takes more than three years for the TCE NAPL to completely
dissolve.
5.4 Pump and Treat
Figure 5.4.1 illustrates the aquifer representing the pump and treat scenario.
Q=-275 Q=022
<— Dx=50m Dx=10m —=><Dx=5.0m >
Q=02 V=1.0m/d U V=0.1m/d U h=0
<
| |
50 m 425 m | 60 m | 425 m

5m

Figure 5.4.1 Pump and Treat Aquifer System Layout
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This scenario creates aregion in the aquifer consisting of flow in the opposite
direction of the natural flow. The induced flow is one-tenth the magnitude of the
natural flow. In addition, in the region of backwards flow, the grid spacing changesto
1.0 in order to maintain similar Courant and Peclet numbers throughout the aquifer.

One injection trench and one extraction trench create the region of backwards flow.
Node 20 contains the extraction trench. It is 102.5 m from the aquifer boundary.
Equation (5.10) illustrates the calculation for the extraction flow rate:

Q — (qnatural + qinduced)

Dx>n
- mH,O - - m° Aquifer
- (025 + 0025) m? Aquifer day 4.0m;§quifer 0.25m°*H,0 (5 10)
=275d" 1

The width of the node is 4.0 m due to the change in mesh size between regions. Node
72 represents the injection trench. It is 42.5 m from the aquifer boundary. The
calculation of injection flow rateis:

Q — (qnatural + qinduced)

Dxn
— mH,0 - - m® Aquifer
- (025+ 0025) m? Aquifer day 5.0m/§quifer 0.25m°*H,0 (511)
=22d*!

In addition this case uses the concentration profiles that exist two monthsinto the no-
action simulation. This allows for a two month reaction period from the time of the

ill.



Figure 5.4.2 compares agueous TCE boundary concentration for the no-action and
pump-and-treat scenario.
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Figure 5.4.2 Pump and Treat vs. No-Action Aqueous TCE Boundary Concentration

Figure 5.4.2 shows that thisimplementation of pump-and-treat performs much better
than the no-action scenario, but still does not meet the drinking water standard. The
process of dispersion (in the direction towards the boundary) driven by concentration
gradientsis still great enough to overcome the advective transport (in the direction
away from the boundary) induced by the injection and extraction wells. Thisresultsin
anet movement of solute in adirection opposite of the fluid flow. Thisis not a
problem with the numerical model. Using equation (2.1) with alarge dispersion
coefficient and low transport velocity will give net solute movement in a direction
counter to the fluid flow direction.
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Figure 5.4.3 illustrates the distribution of mass as a function of time.
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Figure 5.4.3 Pump and Treat Mass Distribution

The cumulative amount of mass exiting at the boundary at 20 years was 0.018% of the
total initial massin the system. Since this fraction was so small, it was not shown in
Figure 5.4.3.

5.5 Pump and Treat with Biodegradation

An aternative to higher pumping rates may be addition of methane and oxygen into
the aquifer to stimulate methanotrophic degradation of TCE. This simulation takes the
previous aquifer and adds biostimulation.



Alternating Injection Wells @ 5.0 m Spacing
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Figure 5.5.1 Pump and Treat with Biodegradation Aquifer System Layout

This scenario adds 4 methane and 3 oxygen injection trenches at a spacing of 5.0 m. It
uses prescribed concentrations of oxygen and methane to represent the injection
process. The simulation assumes water flux due to nutrient injection is negligible.

This scenario adds four new parameters. oxygen, methane, biomass, and a mass
balance tracking parameter “ TCE degradation”. Figure 5.5.1 presents the added

components.

Table 5.5.1 Pump-and-Treat with Biodegradation parameters

Parameter Type Initial Value Comment

02 (ag) Mobile 0 mg/L Parameter representing oxygen.
CH4 (aq) Mobile 0 mg/L Parameter representing methane.
X Immobile | 0.1 mg/L Parameter representing biomass.
TCE degraded | Immobile | O mg/L Parameter to track degraded TCE

for mass balance calculations.

Five additional reactions occur in this scenario; biomass growth, biomass decay, TCE
decay, oxygen injection, and methane injection. Aqueous TCE decay is competitive
with methane concentration. The equation representing TCE degradation is:



87

% =k, X TCE ) Oyaq) (5.12)
a Ks TCE +TCE(aq) ES’TCE CH4(aq) SOZ ¥ Oz(aQ)
S,CH,
Where: k; = maximum TCE degradation coefficient
(0 01 mg TCE/mg biomass-day)

X = biomass concentration (mg/L)
TCEg = agueous TCE concentration (mg/L)
Oag = agueous oxygen concentration (mg/L)
Kstce = TCE saturation constant (1.0 mg/L)
Kscns = methane saturation constant (2.0 mg/L)
Kso: = oOxygen saturation constant (1.0 mg/L)

Units are consistent for this process. The stoichiometry for the above reaction is:
TCE 4 +810x = X %% 94%4® TCE decayed (5.13)

TCE,,, +2083" X %Yi91%:® TCE decayed (5.14)Equation (5.14)

includes the process of intermediate toxicity. The coefficient (20.83 mg biomass/ mg
TCE) isfrom Alvarez-Cohen et al., (1993).

Biomass growth is a competitive process with methane. The rate of methane
consumption due to biomass growthis:

AdCH, o) = kX CHyaq) Osea) (5.15)
ct KSYCH“ + CH4(aq) + :zS’CHA TCE(aq) K + Oz(aQ)
S,TCE
Where: k = maximum substrate utilization rate
(1 2 mg CH4/mg biomass-day)
X = biomass concentration (mg/L)
CHyag) = methane concentration (mg/L)
O2ag = Oxygen concentration (mg/L)
Kstce = TCE saturation constant (1.0 mg/L)
KschHs = methane saturation constant (2.0 mg/L)
Kso: = oxygen saturation constant (1.0 mg/L)

Units are consistent for this reaction. The stoichiometry is:
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CHyaqy * F 7~ Oy 2Fi%® Y~ X (5.16)
CHyaq + 247 Oy %¥i9:® 057 X (5.17)
Where: F = stoichiometric ratio of oxygen to methane

consumption for biomass growth (mg O./mg CH,)
Y = biomassyield coefficient (mg biomass/mg CHy)

Endogenous biomass decay is a single Monod relationship with oxygen and biomass
concentrations.

Eé?s_ =bX ()ZKaQ)
dt Kso, +O

2,(aq)

(5.18)

Where: X = biomass concentration (mg/L)
b = maximum decay rate (0.15 mg biomass/mg biomass-day)
O2ag)= OXygen concentration (mg/L)

Kso.= 0Oxygen saturation constant (1.0 mg/L)

Units are consistent for this reaction. The stoichiometry is:
X +dfy " O,y %FA® (nothing) (5.19)

X +(08)(142)" O, ., ¥¥#4® (nothing) (5.20)

The simulation uses a prescribed concentration of 10.0 mg/L to represent oxygen
injection. It uses a variable methane injection concentration to avoid excessive or
insufficient biomass growth.

CH =2933+15924" TCE , - 01133" X (5.21)

4(aq) (aq)

Where: CHaaq) = agueous methane concentration (mg/L)
TCEg = agueous TCE concentration (mg/L)
X = biomass concentration (mg/L)

The coefficients in equation (5.21) represent alinear combination that results in dX/dt
= 0 when X = 20 mg/L. The simulation targets maximum biomass concentrations of 20
mg/L. Semprini (1991) modeled in-situ biostimulation with maximum biomass
concentrations up to 50 mg/L.
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Figure 5.5.2 illustrates the TCE concentration at the outlet boundary as a function of

time:
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Figure 5.5.2 Pump and Treat boundary TCE concentration
with and without Biodegradation

It appears that adding biostimulation to the pump and treat scenario had little success
in maintaining the required TCE concentration at the aguifer boundary. Thisisalso

illustrated in Figure 5.5.3.
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Figure 5.5.3 Pump and Treat with Biodegradation Mass Distribution

At ten years, only 0.0006% of the original TCE contamination exited the system at the
boundary; biodegradation accounted for 0.013%. It appears that the zone of
biostimulation is having little influence on the TCE concentration in the region of
backwards flow. To further study this, consider the distribution of biomassin the
aquifer at 7.8 yearsillustrated in Figure 5.5.4.
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Figure5.5.4 Distribution of Biomass and TCE,, after 7.8 years.

Figure 5.5.4 shows that biomass growth concentrated in four spikes. In addition,
biomass growth exceeds the 20 mg/L target concentration in two places. This occurs
because the equation used to regulate methane injection attempts to promote a biomass
concentration of 20.0 mg/L at the node itself. Due to lack of oxygen at the injection
node, biomass is not growing at this location, causing a higher methane concentration
to be injected. The methane travels to a neighboring node where, with a sufficient
oxygen supply, excessive growth occurs.

These results suggest that constant injection may not be a suitable method to deliver
nutrients to the subsurface. Even when different wells are used to inject the electron
acceptor and donor, excessive biomass growth still occurs where the two nutrient
fronts meet. It may be necessary to use an alternating injection scheme like the one
used by Semprini and McCarty (1991) in their biostimulation experiments.
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Figure 5.5.5 illustrates the distribution of nutrients and biomass at 7.8 years.
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Figure 5.5.5 Distribution of Biomass, Oxygen, and Methane after 7.8 years.

Figure 5.5.5 not only illustrates the peaking of biomass concentrations at places other
than injection nodes, it shows that this situation can not occur in the real world.

M ethane concentrations cannot reach values of 150 mg/L. The maximum solubility of
methane in water is approximately 24 mg/L. The model was not programmed to take
thisinto account.

TCE concentrations are two high for bioremediation to work in this case. Equation
(5.21) gives the minimum methane concentration to maintain biomass growth.
Intermediate toxicity and competitive inhibition by TCE will cause biomass
concentrations to drop if methane concentration is less than this value. For example,
TCE concentrations greater than 12.1 mg/L will cause biomass to decay when the
methane concentration is 20 mg/L (a practical injection concentration limit).
Unfortunately, TCE concentrations are much higher than 12.1 mg/L.

5.6 Conclusions

This chapter illustrated how to present physical systemsin mathematical form for the
numerical model. This chapter analyzed one-dimensional flow and transport in a
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saturated confined aquifer contaminated with a TCE spill. Analysis determined that all
of the proposed remedial strategies were insufficient. Pumping rates must increase in
order for advective transport to overcome dispersive transport in the pump-and-treat
scenario. Analysis determined that the bioremediation scenario was unfeasible due to
high TCE concentrations.

The example problem presented in this chapter may not be representative of area
world example. The chapter did not address some important factors. First, since the
exampleis one-dimensional, it does not allow for dilution of TCE in the lateral
direction. This mixing of neighboring clean groundwater with contaminated
groundwater will lower TCE concentrations. Second, the example uses a uniform
distribution of TCE at aresidua saturation. Real spills can consist of pockets of
residual NAPL surrounded by material without residual NAPL. In bioremediation
studies, other researchers have used lower aqueous TCE concentrationsin the
neighborhood of 0.04 mg/L (Semprini, 1993).

Table 5.6.1 presents approximate calculation times required for the ssmulations using a
Gateway computer with a486DX-33V Intel CPU.

Table 5.6.1 Approximate Computation Times for Various Aquifer Simulations

Simulation Number | Calculatio | Simulation | Time required

of Nodes | n Timestep Length to complete

(days) Simulation

No Action (Dx = 5.0) 20 0.49 20 years 14 min.
No Action (Dx = 1.0) 200 0.049 20 years 7 hours
Pump Only 80 0.49 20 years 1.5 hours
Pump & 80 0.05 10 years 8 hours
Biostimulation




6. Conclusions

Thisthesis developed a numerical model capable of simulating the processesinvolved
in subsurface remediation. It isageneral purpose model, which provides flexibility in
input parameters and configurations. It includes the processes of two-dimensional
saturated flow; Freundlich and Langmuir sorption isotherms; single, double, and
competitive Monod kinetic models; and intermediate toxicity. In addition, it can
simultaneously simulate the movement of multiple solutes.

A literature search of existing numerical models discovered that no single existing
model provided all of the processes described above. Therefore, this thesis devel oped
anew model. It chose construction of a new model over modifying an existing model
for various reasons. The two primary reasons were to avoid programming errors due to
unfamiliarity with existing code, and the choice of C++ as the programming language.

Chapter 3 discussed the construction of the model. A finite difference algorithm solved
the fluid flow and was easy to integrate with the other numerical method. The
Integrated Operator-Splitting method provided easy implementation and flexibility
with respect to adding different types of biological and abiotic reactions. The model
uses an explicit forward time backwards space finite difference scheme called the
Mean Concentration Slope method used by Poulsen (1994). The Linear Integrated
method simulated the reaction portion of the |OS method. In addition, the chapter
developed maximum and minimum time step criteria for the model.

Chapter 4 evaluated model performance both quantitatively and qualitatively. Dueto
the lack of simple analytical solutions to advection and dispersion coupled with kinetic
reactions, the chapter evaluated advection and dispersion processes independently
from reaction processes. The Relative Sum of Squared Error quantified the differences
between numerical and analytical solutions. The chapter reported it as a function of
Peclet and Courant numbers. The error in advection and dispersion processes was
highly dependent on the choice of Courant and Peclet numbers. This has implications
on the choice of timestep and grid spacing.

Chapter 5 illustrated the use of the model as an aid in site remediation design. The
model investigated different remedial strategiesin afictitious one-dimensional aquifer.
The system was highly sensitive to TCE dissolution rate and relatively insensitive to
grid mesh size. Model results suggested that pump-and-treat is the only feasible
strategy for the spill. Biodegradation appeared to be unfeasible.

Some suggestions for model improvement and expansion surfaced during the use and
evaluation of this model. First, execution speed should be increased. The numerical
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code needs to be optimized for speed. Secondly, the model is currently limited to two-
dimensional simulations, and should be expanded to three. Another improvement is
adding transient flow, and multiple fluid flow to the model. These improvements
would help increase the utility of this program as a modeling tool.
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Appendix A Monod Kinetics and Competitive Inhibition

Before describing the particular implementations of the various types of kinetics, itis
necessary to review the theory behind Monod kinetics. Monod kinetics are different
from, but still based upon Michaelis-Menten kinetics for enzymes. One can think of
Monod Kinetics as describing a chain of enzymatically mediated reactions with a
limiting step described by Michaelis-Menten kinetics. Thisiswhy the equations for
both kinetic models are identical. The following paragraphs describe the devel opment
and theory behind Michaelis-Menten kinetics.

The basic assumption behind Michaelis-Menten Enzyme kinetics is that enzymes
catalyze reactions by first forming an enzyme-substrate complex (Grady and Lim,
1975). This substrate complex will either decay back to enzyme and substrate (the
reverse of the previously mentioned reaction) or irreversibly decay to enzyme and
product. These chemical reactions for complex formation and product formation
respectively are:

Y@

S+E Y Yi ES (A.D
ESY#® E+P (A.2)
Where: S = substrate

E = enzyme

ES = enzyme-substrate complex

P = product

ki = rateconstant for complex formation

k, = rate constant for reverse complex formation

ks = rate constant for product formation

The rates for the above reactions would be as follows:
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e k{SH E} (A.3)
t
di{ ES
UL [ k.{ ES} (A.4)
dt .
di P di ES
{F}__ d{E| = k.{ ES} (A.5)
dt dt “
Where: k; = rate constant for complex formation
k. = rate constant for complex reverse formation
ks = rate constant for product formation
{S} = concentration of substrate
{E} = concentration of free enzyme
{ES} = concentration of substrate-enzyme complex
{P} = concentration of product concentration
Furthermore, it is assumed the above set of equations are in equilibrium such that:
di ES
Q =0 (A.6)
dt
Therefore:
k{EH S} = k{ ES} + k.{ES} (A7)

A mass balance on the total enzymeis given as:

E, ={ES} +{E} (A.8)
Combining equations (A.7) and (A.8) and substituting into equation (A.5) gives:

E{S :§%+{S}9{ES} (A.9)

%)

and

d{P} _ kE{S}
dt _%"'{S} (A.10)

0 let
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K =Ktk (A.11)
kl
therefore
o{P} _kE(S A
d  k,+{S '
Where: {P} = concentration of product
{ES} = concentration of enzyme-substrate complex
{S = concentration of substrate
Er = total complexed and un-complexed enzyme
ki = rate constant for complex formation
k, = rate constant for reverse complex formation
ks = rate constant for product formation
kn = “half-saturation” concentration

Which is analogous to Monod kinetics, ks is analogous to the maximum specific
substrate utilization rate, Et is analogous to biomass concentration, and ky, is
analogous to the half saturation constant. Monod kinetics and its variations, along with
other bio-kinetic equations will be presented in the following discussion.

In competitive inhibition an inhibitory complex can combine with the controlling
enzyme in addition to the reaction equation (A.1). This additional complex prohibits
the enzyme from forming the complex with the substrate of interest.

3
| +E _@fg El (A.13)

Where: | = inhibitor

E = enzyme

El = enzyme-substrate complex

P = product

ks, = rate constant for complex formation

ks = rate constant for reverse complex formation

Equation (A.8) now looks like:
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E. ={ES} +{EI} +{E} (A.14)

Where: Er = total complexed and un-complexed enzyme

{E} = concentration of free enzyme

{ES} = concentration of substrate-enzyme complex
{El} = concentration of inhibitor-enzyme complex

After substitution of equation (A.13) (with the assumption of equilibrium) equation
(A.14) becomes:

E. ={ES +§%{|} +1g{ E} (A.15)

The same derivation for Michaelis-Menten Kinetics as presented above applies:

dP} . KkEJ{S
dt _(%{'}Jfl)kzk%k”{s} (A.17)
S0 let
k
k= A.18
K, (A.18)

therefore
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afP} . kEd{S

dt  ky(1+{1}/k ) +{S}

(A.19)

Where: {P} = concentration of product
{ES} = concentration of enzyme-substrate complex
{S} = concentration of substrate
{I} = concentration of inhibitor
Er = total complexed and un-complexed enzyme
ki = rate constant for complex formation
k, = rate constant for reverse complex formation
ks = rate constant for product formation
kn = “half-saturation” concentration
ki = “saturation” constant for inhibitor

There are other types of inhibition, such as un-competitive, and substrate inhibition
which are not presented here.

Semprini (1991) studied the competitive inhibition of TCE degradation by methane. A
double Monod form of inhibition kinetics was used:

oc, =- XK, < Ca (A.20)
dt KS£+CC+(:|/Ki KA-'-C:A
Where: C. = concentration of contaminant

Ci = concentration of the inhibitor

Ca = concentration of the electron acceptor

Ks = saturation constant for contaminant

Ka = saturation constant for the electron acceptor

ke = maximum transformation rate

Ki = inhibition constant

It should be noted equation (A.20) isin the form of double Monod kinetics, however,
the first term in the equation is the same form as equation (A.19). The second order
electron acceptor term was included since the presence of an electron acceptor was
required for the contaminant transformation.



Appendix B Integrated Operator-Splitting Method

In 1992, Vaocchi and Malmstead (V&M below) explored a mass balance error
inherent in the standard operator-splitting method. In their analysis, they proposed an
“aternating” operator-splitting method to reduce mass balance errors at a constant
concentration boundary. Thisthesis proposes a second alternative, integrated operator-

splitting.

This appendix will describe the integrated operator-splitting method (10S) and
conduct the error analysis of V&M. The results of the |OS error analysis will be
compared to those of standard OS.

Before conducting the error analysisit is necessary to describe 10S and how it differs
from OS. In OS the advection-dispersion processes are de-coupled from the reaction
processes. The advection-dispersion problemis solved first, resulting in an
intermediate concentration. This intermediate concentration is used as theinitial
concentration for the reaction problem. The reaction problem is solved over the same
timestep resulting in the final concentration at the end of the timestep. 10S eliminates
the use of the intermediate solution. Instead, it uses the change in concentration
calculated in the advection-dispersion step as a source/sink term in the system of
reaction equations. It was speculated that using the initial concentration at a timestep
and accounting advection and dispersion implicitly in the reaction equations would
reduce the error in the final solution. It will be shown later, for the case of aone-
dimensional aquifer with a continuous source of a non-conservative solute, the error in
|OS islower than OS.

The discrete form of equation (3.1) is used to calculate the change in concentration at a
node over agiven timestep is:

DC=C, - C =DC. +DC,,, (B.1)
Where: DC = change in concentration over atimeinterval
Ci = concentration at end of time interval
Ci = concentration at beginning of time interval
DCr = change in concentration due to advective-dispersive flux

DC.xn= change in reaction due to kinetic reactions

It should be noted the solution to the kinetic reaction equation uses the linear
integrated method described in Appendix D. Table B.1 describes the steps used to
solve equation (B.1).



Table B.1 10OS Order of Calculation
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Step | Compute Comment

1 DCr = f(G;,Dt) Compute the change in concentration at a node due to
conservative advective-dispersive flux

2 Ci = Cio + DCr Compute atria final concentration, it is needed for
the calculation of kinetic reactions.

3 DCixn = 1(Ci,Cy,Dt) Compute the change in concentration due to kinetic
reactions, which is afunction of initial and final
concentrations, and the length of time period.

4 DC = DCg + DCixn Compute the trial change in concentration at the node

5 C: =C +DC Compute new tria final concentration. If the change
in C; from the last iteration is not sufficiently small,
go back to step 3 and continue iteration.

Having described the |OS method, the error analysis used by V&M can be conducted.
First consider a one-dimensional aquifer with a constant source of solute undergoing
first order decay. The boundary and initial conditions are:

C(x=0,t>0)=C, (B.2)
C(x,t=0)=0 (B.3)

and the equation of first order decay is:

dC

dt

=-kC (B.4)

To determine the change in concentration due to first order decay over the timestep,
Dt, using the LI method, the following integration is performed:
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DC._=-kO & f'C't+cEpt (B.5)
xn Q g t lu '
sC, - C ‘i
DC,, = - kg———t? +Ct (B.6)
DCrxn :LZDt[Cf +C:|] (B7)

Sincefirst order decay isarelatively simple reaction, the final concentration, C; , can
be determined directly, it will not be necessary to perform the iterative procedure
outlined in Table B.1. Since C; = C; + DCr + DC;,, equation (B.7) becomes:

DC,, = 2[(G +DC, +DC, ) +C] ®9)
5 kDtu_ - kDt
DC,, al+ — ,=———|2C +DC B.9
rxn 2 H 2 [ ( F] ( )
¢ u
- é a
DC,, = K gEG DGy (B.10)
2 = kDt %
el+—— u
e a
é2C +DC_ )
DC, =-kDtz————F"~ B.11
™xn 8 2+th H ( )
At the end of the first timestep the simulation equation (B.1).becomes:
¢2C +DC_ 1
DC=DC, - kDt z————~ B.12
] g 2+kDt H (812
Solving for the final concentration:
C, =C +DC, - kpt&2& *DCe U (B.13)

& 2+kpt H

Now substituting C* (X,Dt) for C; + DCr to change (B.13) into aform similar to
equation (12) in V&M yields:



éC* (x,Dt)+C u

Cos(Xx,Dt) =C, =C*(x,Dt) - kDt 2 B.14
es(DY=C, =CH(x D)~ KDtg=— Py (B.4)
Sincein the first time step, C; = 0, equation (B.14) becomes:
kDt U
X,Dt) = C* (x,Dt B.15
Cios(%,Dt) = C*(x, )ELZthH (8.15)

C*(x,Dt) isthe “perfect” solution to the advective-dispersive equation at the end of

timestep Dt at location x. Now continuing with the 10S form of equation (15) of
V&M:

e(x,Dt) =C, ., (x,Dt) - C (X, Dt) (B.16)
_ COVDi - k(Dt-t) ~ NR
e(x,Dt) = A (03 G™(x,Dt- t)dt
. o Ot (B.17)
oV USMR (%, Dt - )it
A 2+thH
Simplifying:
kDt U

x, Dt NR(x, Dt +1 <o 8- Ot B.18
o= oo e §- G @

Integrating the above equation over an infinite aquifer;

¥ Dt ~ ¥

Cv .é. kDt 6uU
Se(x, Dt)dx = 2% A Plek - & kP
GR(x Dk == O 2+ kDt o<

o€

"R(x,Dt +t)dxdt (B.19)

leads to the mass balance error over the entire agquifer at the first timestep, Dt

Dt «
_ \e_th kDt Ou
e(Dt)=Cyv el B.20
(00 =Cugee e - g o (520
e o kDt th u
&(Dt) = C.vee '@ cpidt - &- 0 B.21
(DY) 028 0= g 2+thz?jg (B8.21)
_ el o/ ot kDt ou
a(Dt) = Cva-e (e - 1)- Dt&- B.22
(D) =Cove, (- 1)- brg 2+ kDt &l (B.22)

To find the relative mass error, it is necessary to divide by total massin the system:
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C véL1 g o (e"Dt - 1)- Dtgi- kDt gu
o' @ .

K 2 + kDt 24

E|os(Dt) = € u

(B.23)

C°V§|1 (1- e )E

Which reduces to the relative cumul ative mass balance error at the first timestep, Dt.

thgi- kDt §
2+ kDtg

1_ e kDt

Eos(Dt) =1-

(B.24)

Which is afunction of kDt, the same as the error term derived by V&M for standard
OS. Figure B.1 illustrates the differencesin error between these two methods. 1t should
be noted, the |OS error is reported as an absolute value. The 1OS error is negative in
value but less in magnitude than OS.

1.0

. il

0.3 /
0.2

Realative Absolute Error

0.0 besszzczcoozitt 7l
0.01 0.1 1 10 100
kDt

FigureB.1 Comparison of 10S and OS Error as a Function of kDt..



Appendix C Solute Transport Equation

Thiswork uses the MCS solution scheme devel oped by Wind and van Doorne (1975),
and Poulsen (1994) to solve the advection-dispersion portion of the system of
equations. This appendix isaquick overview of the calculations used to derive the
equations.

First, consider advection and dispersion in a one dimensional aquifer. The fundamental
equation for the change in concentration of a solute in time in one-dimensional space
IS

n§ d ¢ §1D£ qCH+ R(C,t) (Cl)

Where: dc/dt = time rate of change in concentration
concentration

dispersion coefficient

darcy flux

material porosity

net rate of reaction (sink/source term)

-0 00

For this discussion we are only interested in the advection-dispersion part of equation
(C.1), the reactive portion will be ignored. Equation (C.1) can therefore be rewritten in
the form:

©_.

dt (C.2)

Sal=

Where J is the equation of solute flux in the x direction. The solute flux equation is
defined as:

dc Ac

J—-Ddx (C.3)

The above equation is the one of interest. Next, it will be necessary to convert equation
(C.3) into adiscretized form. Thiswill be done by setting boundary conditions and
integrating equation (C.3) with respect to space at a given time instant. Rewriting
equation (C.3) in standard form for the solution of the first order linear differential
equation yields:
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dC q

J
dx nD D

(C.4)

The next step is to solve the homogeneous equation. D and q are assumed to be
constant and uniform over the area of integration.

€969 (C.5)
dx nD

24,0
C=Ke'®® (C.6)

Next, the solution of the non-homogeneous equation is computed. K’ (x) refersto the
derivative of the constant of integration, K, with respect to x.

£4.,0
K'(x)e™? =- (C.7)
D
® 4,0
K'(x)=- e ' (C.8)
e -9x0
K(x) =- ig- Ee =+ K (C.9
Dé ¢ 7]
Jn -«
K(x) =- Ee 4+ K (C.10)
Therefore:
én -9x U 9«
C= éﬂe "+ Ke™ (C.11)
ed a
Ay
C= an + KemP (C.12
q

To eliminate the constant of integration “K, the boundary conditions (C=Cy,x=x;) and
(C=C,,x=x) are substituted into equation (C.12):

gC, - In _qGC, - Jn
a, 4y
qeﬂD qeﬂD

(C.13)

2

With rearrangement yields:
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3= 9%-9%  ,ac (C.14)
[%- % 39 n

ngl %”D

Q-

Jisthe flux from boundary (1) to boundary (2). Equation (C.14) is prone to artificia
numerical dispersion. It is necessary to define aterm to correct the actual dispersion
coefficient for this artificial numerical dispersion.

Firgt, it is necessary to explain some nomenclature. t refers to the current time period,
or the beginning of the current time interval. t+ Dt refers to the next time period, or the
ending of the current time interval. x refersto the current index in the aquifer. x-Dx
refers to the previous index and x+ Dx to the next index. Dt refers to the time interval.
Dx refersto the grid spacing.

The equation for change in concentration as a function of time can be written:

_ d

C.15
4 Y (C.15)
In discrete terms, it iswritten:
Ct+Dt,>< - Ct,x - 'Jt,x - ‘Jt,x— Dx (C 16)
Dt Dx '
Expanding yields:
Ct+Dt,x - Ct X q Ct,x+Dx ZC +Ct X- Dx _ g Ct,x - Ct,x— Dx (C 17)
Dt zaegeq nd 0 Dx n Dx '
nge oo 1—

Equation (C.17) can be considered a finite-difference approximation to the advection-
dispersion equation (Poulsen 1991). A Taylor expansion based method was used to
find and correct for second order numerical errors. If the following Taylor expansion
series are used (neglecting terms of fourth order and higher):
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C.=C, (C.18)

dac  (Dt)* d’c _ (D)’ d°C

Ct+m,x=Ct,x+DtE+ > 26 & (C.19)
Dx)* d2c  (Dx)® d®

Coroe =G, + x4 (2R AC (DY d°C (c.20)
: : X 2 dx 6 dx
Dx)* d2 Dx)’ g3

Ct,x—Dx:Ct,x- DX§+( X) d C ( X) d C (C21)

& 2 o 6 o

Rewriting equation (C.1) to solve for the change in concentration in time, then
differentiating twice with respect to time:

2
dC _ ,d°C_qdC

@ Yo na (€22
d’C _¢g°d*C _g_.d°C d‘C
@ woe “nlo D ae €2)
d’C _ags’d’C
e =gﬁa Ve (C.24)

If equations (C.18) through (C.24) are substituted into equation (C.17) and simplified,
the following equation will result:

e
2 D42
¢cqDx q Dt+ gDx 7d C+

h2 n2 @i 6 &
G9C,adC_ nge™ - -1 (C.25)
d noadx e o9

& (Dt)” o* (Dx)°, gpDtdd’c
n 6 n’° 6 n g ox

When comparing equation (C.25) with equation (C.22), one can see the numerical
correction. The second order term approximates the artificial numerical dispersion
created by the numerical method. The numerical dispersion coefficient would be the
difference between the second order term in equation (C.25) and the actual dispersion
coefficient, or:
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2
Dnum = g% - q_gg + qD—X - D (C26)
n2 n 2 x4l 0
nce™ - 1=
e 7]

The next step isto determine how the correction for numerical dispersion fitsinto
equation (C.14). First compare equation (C.14), which is the finite difference equation
for flux between two nodes, with equation (C.3). Comparison of the termsin these
equations which involve dispersion;
-Dg« Dx gq 602-01
dx n G%DXE Dx

(C.27)

show that the “equivalent” dispersion term for the finite difference equation of solute
fluxis:

D* =~ EX 1 (C.29)
1 Dxx
1- ¢ @
Equation (C.14) now becomes:
J =é'_”(D*- D )E(cz- C)+aqC, (C.29)
SDX num

After inserting equations (C.26) and (C.28) into equation (C.29) and simplifying, the
one dimensional equation for flux between two nodes in a one dimensional aquifer
becomes:

o g°Dt nDG
= -—+C, -C,)+0C C.30
€2 2nDx  Dx (C.- C)+aC, (C.30)

It should be noted Equation (C.30) is also equivalent to the implementation of the
FTBS mixing cell model used by Rao and Hathaway (1989) which cited the use of a
numerical dispersion coefficient in the x direction to be:

.2
D, = % DX gﬂ_g bt (C31)
n 2 ng 2
Which is the same as calculated here, accounting for the difference in the conventions
and placement of the porosity, n, and grid spacing, Dx.
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Equation (C.30) is only for one dimension. It is necessary to have an equation of flux
which corresponds to atwo dimensional aquifer. The fundamental equation for the
change in conservative solute concentration as a function of time in two dimensionsis:

n% - %G%XC- nDXX$- anyﬁg
& o (C.32)
38%1 C-nD &« nD dco
dyg y Wdy Xdeﬂ
Where: Dy = (atv§+a,vf)/ Vi +V5

)
<
1
—_
QD
><<r\>
+
o
<
<N
N—
\
<
x N
+
<
<N

Dy = (a- at)vxvy/,/vf+v§

Vx = porewater velocity in x direction, gy/n
vy = porewater velocity iny direction, gy/n
a; = longitudinal dispersivity

a; = transversedispersivity

g, = darcy flux inx direction

gy = darcy fluxiny direction

n = materia porosity

Once again, from equation (C.32) the flux componentsin both the x and y directions
respectively can be defined as:

3,=-0, % p L.%¢ (C.33)
dx dy n
o dc .« q
J,=-D, - D, S+ C (C.34)

It can be seen, there is an extraterm, Dy, included in the two dimensional flux
equations. It is necessary to include this term in the FTBS solution scheme. For this
discussion consider only the flux in the X direction (equation (C.33)), the equations for
the Y direction will be similar.

Equation (C.33) can be re-written in the form:



116
J :-‘gt) +p, JHOL g, (C.35)

Which isin the same form as the one dimensional flux equation. So, if the “ effective’
dispersion coefficient were to be defined as:

D, =D, +D, dC & (C.36)
dy dC
and using the following grid layout;
3
v 1 2
X
the discretized form would be:
D, =D, +D, 2 % DX (C.37)
Dy GC,-C
Inserting equation (C.36) into (C.30) yields:
&, q Dt n & C,-C, Dx &0
J =¢2X- X—- — +D -HC,- C)+ C.38
““&2 2Dx Dx& * ¥ Dy C,- clm( 2= G)*aG, (C39)

And when simplified:

&, q°Dt nD_0O nD,,
J =gx. M = ZedC - C)+—2(C, - C.)+ C.39
Tk e g G, (G G)rae (C39)

Which is the equation for flux in the X direction between two nodesin atwo
dimensional aquifer. Thisis reasonable, since the numerical dispersion termis second
order, not third. If one were to expect a correction for Dy, it would have to be third
order, which, in this implementation, was neglected.



Appendix D Linear Integrated Method

There are many methods that could have been chosen to solve the reaction portion of
the advection-dispersion-reaction equation in the operator-splitting scheme. Finite
difference schemes could have been used. Odencrantz (1992) used a fourth order
Runge-Kutta method using 5 to 100 sub-time steps for every advection-dispersion
timestep. For thiswork, the linear integrated (LI) method was chosen. It is assumed
this method is not new, however it is not known what it is otherwise called. The basic
premise that underlies the L1 method is that concentrations are assumed to only vary
linearly over the given time step, Dt. Equation (D.1) depicts the formula used to
represent concentration as a function of time.

Cf - Co
C= t+C, (D.1)
Dt
Where: C = concentration as afunction of time (t)
C: = fina concentration
C, = initia concentration
Dt = timestep
t = time

Thefinal concentrations at the end of atime step are determined by substituting the
linearized equation (D.1) into the reaction equations and then integrating over the time
step. Dt. Aninitial guessfor the final concentration is used to determine the change in
concentration due to each reaction in the system. Then, the individual integrated
reaction rates are summed up to determine the net change in concentration due to
reaction. Thefinal concentration is then calculated as the initial concentration plus the
net concentration change. The processis then repeated using this new fina
concentration. Iterations continue until the change in the final concentration between
iterations is sufficiently small. This particular iterative method of the solution of the LI
system of equations may not be the most efficient, but it is easy to code, and should
return the same value as another method would.

In most chases the LI method will converge quickly. However, there are cases where
reaction rates are large, they may cause concentrations to fall in the negative range.
With certain reactions, this can cause an oscillatory effect in the calculations. A
solution will not be found. To fix this problem, one only needs to decrease the size of
the time step used in the calculation until atimestep small enough isfound. Thiswill
break the effect.
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For an example of the implementation of the LI method, consider afirst order decay
reaction:

dC
— =-kC D.2
r (D.2)

Substituting equation (D.1) into equation (D.2) yields:

C, o}
t+C,+ (D.3)
g

CC _ @f -
—=-k

¢ & Dt
The LI method then requires integration over the time period, Dt.

Ci Dt .

@f - C (0]
IC =- ¢ 2t+C =t D.4
Coico 9(8 ot o ! (D.4)

which yields:
C

(o]

+C;
DC = - kDt

(D.5)

Due to the simplicity of the first order equation, the change in concentration isa
function of the average of theinitial and final concentration of the time step. Most
equations however, are not thisssimple.

The following figure depicts the a comparison of afirst order decay reaction using the
LI method and aforward finite difference method. Both methods use k = -0.1 and Dt =
5.0.



10000 &
9.000 1 \
8.000 |
7.000
6.000 |
5.000 |
4000 +
3.000
2,000 |
1.000 |

Concentration

0.000

119

—A&— LI

© Foreward

10

15

u Actual
5 R
? g ﬂ******lfff—g
20 25 30 35 40 45

Time

It may be necessary to analyze each reaction separately, and develop criteriafor the
maximum allowabl e time step in order to minimize errors. For example consider the
first order reaction mentioned above. The following figureillustrates the difference in
cumulative concentration change due to reaction between the assumed “linear”
relationship and the actual first order relationship (assuming the only reaction
occurring isthefirst order decay reaction). If the relationship varies too much from the
linear line, it may be necessary to decrease the time step. The maximum allowable
time step may be a function of how much deviation from linearity is alowed, and the
magnitude of the reaction coefficients. However, analysis such as this were not
included here, they were considered to be out of the scope of this work.
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Appendix E Global Timestep Calculation

This appendix describes how the equation for the optimal timestep was developed. It
describes the theory behind the criteria, as well as the calculations made to arrive at the
equations. Calculations for one and two dimensions are included.

The method used to determine the maximum allowable timestep was first used by
Wind and van Doorne (1975) to calculate criteria used in solving the variably saturated
flow problem using the MCS method. The equations used in the study were quite
similar in structure to the governing equations here. The method is repeated here.

The timestep criteria sought in this appendix is based on the theory of “amplification”
of roundoff errors. Due to machine precision, there will aways be some small error in
the calculations. It is desired to determine the timestep at which these errors will not
“amplify” or cause larger errorsin subsequent timeintervals. If the timestep istoo
large, the error, originally introduced by roundoff, will be afactor larger in the
subsequent time step. The same error will then be another factor larger in the
following time step and so on. Thiswill lead to oscillations in space as iterations
progress, and may even cause the method to fail.

Sinceit isfar easier to explain the mathematics for a one dimensional aquifer, the one
dimensional case is presented first. Consider the case of the following node segments

in one dimension:

From the MCS method, the fluxes into node 2 and out of node 2 respectively are:



Where: g
Dx
n
D
Ci
C
Cs
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2

D6

-8 4 D9 o), ED)
q° nD?Y

82 2o Dxp e GG (52

darcy flux in the x direction (a positive value)
distance between nodes

material porosity

dispersion coefficient

solute concentration in node 1

solute concentration in node 2

solute concentration in node 3

Now, over atimestep, Dt, the change in concentration at node two can be given as:

J,-J
DC, = # Dt (E.3)
X

or when combined with equations (E.1) and (E.2) can be given as.

DC, =

nDx

ﬁéeasq q°Dt  nDO

®Eem q°Dt nDO uo
- —=C,- C)+
Dt g ?2 2nDx Dxra( ) 0|Clu

+ (E.4)
- M2c,-¢)+qc
2 2nDx DXﬂ( :)*a 2$

pc, = DLEE® At mYoe ¢ )G, c)i (S
00

&2 2nDx  Dxo

Equation (E.5) isthe “correct” change in concentration at node two over the time
interval Dt Now introduce a small error, e,, such that the calculation of C; at the
beginning of the timestep isin error:

C; =C, +e, (E.6)

Denoting the change in concentration using the “incorrect” value for C, asDC, , the
error in the change of concentration over Dt can be computed:



123

N Dt @] q Dt nDO{ X 0
dDC, = DC; - DC, = 4 2C; - 2G,) +q(C, - G} (E7
=% P T k&2 20D Dx J+alC.- Gl €D

or:
Dt & ¢°Dt 2nD0O 0
dDC, = - - e, - g6+ E.8
2" Dx &8 DX Dxo? 2y E8)
Simplifying:
e Dto 2DtDu
dDC, = & E.9
2 g%anﬂ E@ (E9)
Dividing by the error:
.2
o, =0 20 o gpr. 222 (E10)
e nDxg  Dx Pe

Where Co is the courant number and Pe is the peclet number.

In order to keep errors from “amplifying”, the magnitude of the error produced by

Equation (E.5) must be less than the original error. In mathematical terms this can be
stated:

% £1 (E.11)
€
Which trand ates into:
co? +2° 413 0 (E.12)
Pe
and
co?+2° 10 (E.13)
Pe

Equation (E.12) is satisfied for all Pe > 0 and Co> 0. However Equation (E.13) is not.
The solutioniis:
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Cof |+ +1- % (E.14)
Pe Pe

Equation (E.14) must be satisfied at all nodes in the ssimulation in order to prevent
errors from amplifying. The easiest way to satisfy (E.14) isto adjust the global
timestep. The equation used to cal cul ate the maximum timestep can be derived from
Equation (E.14) to be:

(E.15)

2~ 22 .2 2
Dt £ aEnzD(:) +aEan9 _n2D
8qz 8qz o}

In addition to the maximum allowabl e timestep, numerical analysis showed there
exists aminimum allowable timestep as well. The error caused by too small of a
timestep is only afraction of the error caused by too large of atimestep. However, the
error istoo large to ignore.

Consider a special case of the one dimensional example above. In the case of a
retreating solute front, dC/dx > 0, dC/dt < 0, g > 0, the flux out of anode over a
timestep must not be greater than the solute concentration in that node. Or in other
words, the flux cannot be so great that it will cause the concentration at the end of the
timestep to become negative. In mathematical terms this can be stated.

& q°Dt nDo
- - —=C, - C)+qC £qC E.16
82 2nDx sz( 2 1) KR ( )

Sincein this case, (C,-C,) is positive, it can be demonstrated the following equation
must be satisfied:

2
q_gbt_nm .,

(E.17)
2 2nDx Dx
Rearranging yields:
2
oD, d_nD E.18)
2nDx 2 Dx
bt 5, 2nD (E.19)
nDx gDx

Which tranglates into a minimum timestep criteria:



125

or acourant number criteria

2
pts DX 20D (E20)
a q
2
Co® 1- = (E21)
Pe

The following graph illustrates the different timestep criteria equations for aone
dimensional aquifer as afunction of peclet and courant numbers superimposed with
contour lines of the RSSE. For adetailed discussion of the RSSE, see the main text.
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Equations (E.18) and (E.21) are only for one dimension. It is necessary to repeat the
analysis for two dimensions. Consider the case of the following node segmentsin two

dimensions;



From the MCS method, the fluxesinto and out of node5 are:

D, 0
%_ ZqDXx ) an z(cs_ C4)- ﬁy(q ) Cl)+qXC4 (522

D
L CREARE L CRYA RIS G

5~E2  2Dx Dx o DxDy
&, G ND,O. ., MDy
Jy = 5 2oy Dy G- C,)- Dy(c C,)+q,C, (E.24)

3 _a&, qi_nD
®7&2 2Dy Dyg

196,- 0)- 222 (- ¢ )+a,G  (E29)

Dny

Over the timestep, Dt, the change in concentration at node five can be given as:

Je-J Jye - J
DC, =2 2Dt+=>_—2pt (E.26)
nDx nDy

Simplifying Equations (E.22) to (E.26) yields:

126



127

&, Dt 1aeqXDto _ ND,,
PG = g2an 2 nDx2 Dx’g (ZCS G C)
aeq Dt 1aE§J|yDto ] nD,,
éZnDy 280Dy Dy? g( G- G- G) (E.27)
DWDt(c +C,- C,- G)
Dy 4 2 1
q,Dt
+an (C Cs) an( CS)

The associated error in the change in concentration is:

&) Dt aeqXDto 2nD,, 0

XX -

dD £
G = E nDx &nDx# DX’ ges
i ag),Dto”  2nD,, 0

énDy 8nDyz Dy? Ees (E.28)
+2ny e
DxDy
_qDbt gDt
nDx nDx
And the relative error becomes:
2 D D L
DS - b ?qx )20 82 s, o 2 (E29)
& nDx 2 8nDyﬂ & ng Dy- DxDyg

The associated inequality is:

2 D ..
a%’qx 0, 2% 02, o@D, Dy 2.1£0  (E30)
nDx 2 gnDyz & ng Dy? Dnyz

Therefore the maximum timestep for a two-dimensional simulation that allows
stability is:
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_ 2
prg BHVB A ”A'3+A (E.31)

%qx ¢2+&qy 02
&nDx2 8nDyéJ
B= Dxx + DW _ DXY
Dx* Dy®* DxDy

Where: A=

In addition, the corresponding minimum timestep criteriain two dimensions was
developed using the similarity of the other one and two-dimensional criteria equations:

ors VA- 2B

A (E.32)

It can be shown, in the case of one-dimension, the above two dimensional equations
reduce to the one dimensional equations calculated above.



Appendix F Additional Kinetic Reaction Verification Tests

This appendix continues the verification analysis of kinetic reactions from the Model
Performance chapter. Refer to this chapter for details on the analysis.

Sngle Monod

The equation for single Monod decay is.

©__kC (7.33)
& K. +C
Where: dC/dt = time rate of change of concentration (M/L>T)
C = concentration of solute species (M/L?)
k = maximum rate constant (T™)
Ks = half saturation constant (M/L°)

Figure F.1 compares model solutions with the true solutions using a global calculation
timestep of 2.0 and varying coefficients. Circles and lines denote numerical and true
solutions respectively.
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k=0.1,Ks =10.0

k=1.0,Ks=10.0

Concentration
[6;]
T

Time

Figure F.1  Single Monod Decay with Varying k, and K,.

The numerical and true values appear to agree well. The squared relative residual was
computed at time 20.0 for the coefficients above. Figure F.2 illustrates the results.
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Figure F.2 Squared Relative Residual as a Function of

Single Monod Decay Coefficients and Global Timestep.
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Squared Relative Residual

Once again, Figure F.2 shows the residual calculation is higher for higher time steps.
The highest relative residual was found for the case of k = 1.0 and K¢ = 0.5, where the

concentration was allowed to fall to values less than 108,
Double Monod

The double Monod reaction is;



Where: C,
Cq

A X X

sa

Ksd
Ya
Yq
Yx

Theresults are:;

Y.C, +Y,C, %%® Y.C, (7.34)
kXC,C,

rate= (KQ +Ca)(st +Cd)

(7.35)

concentration of electron acceptor (M/L™®)
concentration of electron donor (M/L™)

biomass concentration (M/L %)

maximum rate constant (L %/M2.T)

half saturation constant for electron acceptor (M/L™®)
half saturation constant for electron donor (M/L™)
stoichiometry coefficient for el ectron acceptor
stoichiometry coefficient for electron donor
stoichiometry coefficient for biomass
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Figure F.3 compares model and true solutions using a global calculation timestep of
2.0. For thistest k= 0.2, K = 5.0, Kgg = 10.0, Y4 = 0.5, YA= 1.0, Yp = 2.5. Circlesand
lines denote numerical and true values respectively.

10

Concentration
o

Biomass

Acceptor

Time

Figure F.3 Double Monod Decay.
k= 0.2, Ka=5.0,Kg=10.0, Y, =0.5 Yo,=1.0, Yp =25.

20
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It can be seen there is a small discrepancy between numerical and true valuesin the
solution to the electron donor. The decay rate of this chemical was the largest. The
squared relative residual was calculated at timestep 20.0. Figure F.4 shows the results
as afunction of global timestep:

1.0E-1 +
1.0E-2 +
1.0E-3 +
1.0E-4 +
1.0E-5 +

1.0E-6 +

Squared Relative Residual

1.0E-7 +

1.0E-8 +

1.0E-9 t t t {
0.001 0.01 0.1 1 10

Timestep

Figure F.4 Squared Relative Residual as a Function Global Timestep
for Double Monod Reaction.

Kinetic Linear Sorption

The kinetic implementation of the linear sorption isothermis as follows:
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S TgC (K,C-9) (7.36)
Where: C = concentration of solute species (M/L?)
S = concentration of sorbed species (M/L?)
a = ratecoefficient (T?)
Kg = sorption coefficient

Figure F.5 compares model and true solutions using a global calculation timestep of
2.0. For thistest a = 0.1 and K4 = 2.0. Circles and lines denote numerical and true
values respectively.

Concentration

0 2 4 6 8 10 12 14 16 18 20
Time
Figure F.5 Kinetic Linear Sorption, a = 0.1, Ky = 2.0.
The numerical and true values visually match quite well. The squared relative residual

was calculated at timestep 10.0. Figure F.6 shows the results as a function of global
timestep:
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0.001

0.01 0.1
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Figure F.6 Squared Relative Residual as a Function of
Globa Timestep for Kinetic Linear Sorption.

Kinetic Langmuir Sorption

The kinetic implementation of the Langmuir sorption isothermiis:

Where: C

dC _dS aele_S(':_j
& & 6k+C o

concentration of solute species (M/L?)
concentration of sorbed species (M/L°)
rate coefficient (T

sorption coefficient

sorption coefficient (M/L°)

1 10

(7.37)

Figure F.7 compares model and true solutions using a global calculation timestep of
2.0. For thistest a = 0.1, k; = 8.0, and k, = 1.0. Circles and lines denote numerical and
true values respectively.
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Solute

Concentration
(2]
|
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Time

Figure F.7  Kinetic Langmuir Sorption, a = 0.1, k; = 8.0, k, = 1.0.
It can be seen the numerical and true values visually match quite well. The squared

relative residual was calculated at timestep 20.0. Figure F.8 showsthe resultsas a
function of global timestep:
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Figure F.8 Squared Relative Residual as a Function of
Global Timestep for Kinetic Langmuir Sorption.

Kinetic Freundlich Sorption

The kinetic implementation of the Freundlich sorption isothermis as follows:

dC _ds _ n
e (k- ) (7.39)
Where: C = concentration of solute species (M/L?)

concentration of sorbed species (M/L°)
rate coefficient (T™)
sorption coefficient
= sorption coefficient

SxX O W
I

Figure F.9 compares model true solutions using aglobal calculation timestep of 2.0.
For thistest a = 0.2, k= 2.0, and n = 0.8. Circles and lines denote numerical and true
values respectively.
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Figure F.9 Kinetic Freundlich Sorption, a = 0.2, k= 2.0, n=0.8.
It can be seen the numerical and true values visually match quite well. The squared

relative residual was calculated at timestep 6.0. Figure F.10 shows the resultsas a
function of global timestep:



Squared Relative Residual
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Figure F.10 Squared Relative Residual as a Function of
Global Timestep for Kinetic Freundlich Sorption.



Appendix G Bugs User’s Manual

The BUGS (SCRATCHPAD) User's Manual is available from BUGBYTES, INC., please
visit http://www.bugbytes.com for more details.


http://www.bugbytes.com
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